# **Long-Term Methanol Vehicle Test Program**

Final Subcontract Report 1 November 1992 – 1 February 1995

> J.C. Jones, T.T. Maxwell Texas Tech University Lubbock, Texas



National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3393
A national laboratory of the U.S. Department of Energy
Managed by the Midwest Research Institute
for the U.S. Department of Energy
Under Contract No. DE-AC36-83CH10093

# Long-Term Methanol Vehicle Test Program

Final Subcontract Report
1 November 1992 — February 1995

J. C. Jones, T. T. Maxwell Texas Tech University Lubbock, Texas

NREL technical monitor: C. Colucci



National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3393
A national laboratory of the U.S. Department of Energy
Managed by Midwest Research Institute
for the U.S. Department of Energy
under contract No. DE-AC36-83CH10093

Prepared under Subcontract No. AAE-5-12245-01

September 1995

This publication was reproduced from the best available camera-ready copy submitted by the subcontractor and received no editorial review at NREL.

#### NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information (OSTI)

P.O. Box 62

Oak Ridge, TN 37831

Prices available by calling (615) 576-8401

Available to the public from:

National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650

Printed on paper containing at least 50% wastepaper, including 10% postconsumer waste



# 1. Background and Objective

Methanol, one of the leading alternatives to gasoline as a motor vehicle fuel, has been highlighted in national competitions such as the Society of Automotive Engineers (SAE) Methanol Marathon in 1989 and the SAE Methanol Challenge in 1990, but little has been done in the area of long-term testing of methanol as a motor vehicle fuel. To address this shortcoming, a 1988 Chevrolet Corsica was modified by Texas Tech University to serve as a test bed to determine the long-term effects of methanol on engine and emission systems performance. The vehicle was previously modified to operate on M85 for the SAE Methanol Marathon/Challenge competitions; it was further modified for M100 operation for the long-term test program.

The objective of this project was to determine the effects of methanol fuel on engine performance and exhaust emissions during long-term use. Engine wear, gasket performance, fuel economy, emissions level, oil consumption, and overall vehicle performance were monitored over approximately 22,000 miles of vehicle operation. Vehicle performance, oil consumption, and emissions baselines were established initially to be used for comparative purposes during the program. The engine was removed from the vehicle and disassembled, and all bearing and ring clearances and cam profiles were measured to determine any preexisting wear. All gaskets, seals, bearings, and piston rings were replaced. The cylinder bore was honed, valve and valve seats were lapped, and the crankshaft journals were polished. Higher flow rate fuel injectors supplied by AC Rochester were installed and the computer system was calibrated for M100 fuel.

At the completion of the program, after the mileage accumulation phase, the vehicle emissions level, oil consumption, and engine performance were again determined. The engine was removed from the vehicle, disassembled, and engine component wear was determined and compared with the initial condition.

#### 2. Vehicle Modifications

The Corsica was initially modified to operate on M85 for the SAE Methanol Marathon/Challenge competitions [1 and 2]. The vehicle won 2<sup>nd</sup> place overall in the 1990 Methanol Challenge, placing 1<sup>st</sup> in endurance fuel economy, 2<sup>nd</sup> in acceleration, and demonstrating excellent emissions and maneuverability. Table 1 summarizes the major event rankings for the Texas Tech Corsica.

Table 1. Major Event Rankings for TTU Corsica in 1990 SAE Methanol Challenge

|                   | 2 <sup>nd</sup> Place          | Overall                       |      |  |  |  |  |  |  |
|-------------------|--------------------------------|-------------------------------|------|--|--|--|--|--|--|
| 1 <sup>st</sup> P | lace Enduranc                  | e Fuel Econom                 | ıy   |  |  |  |  |  |  |
|                   | 2 <sup>nd</sup> Place Acc      | eleration                     |      |  |  |  |  |  |  |
| FT                | P Emissions R                  | Results (g/mi)                |      |  |  |  |  |  |  |
| HC                | 0.04                           | NO <sub>x</sub>               | 0.71 |  |  |  |  |  |  |
| NMHC              | 0.03                           | CH₃OH                         | 0.29 |  |  |  |  |  |  |
| CO                | 0.60                           | OMHCE                         | 0.16 |  |  |  |  |  |  |
| l<br>(miles       | TP Fuel Econo<br>per gallon ga | omy Results<br>soline equival | ent) |  |  |  |  |  |  |
| Ci                | City 21.6                      |                               |      |  |  |  |  |  |  |
| High              | w ay                           | 41                            | .0   |  |  |  |  |  |  |
| 55/45 City        | /Highw ay                      | 27                            | .4   |  |  |  |  |  |  |

A methanol-compatible fuel system (tank, pump, lines, fuel rail, and injectors) was installed for the SAE competitions. GM delivered the Corsica with a computer interface which allowed modifications to be made to the engine control maps during engine operation. The engine stroke was increased to take advantage of the increased amount of exhaust product and slower burning characteristics of methanol. To ensure good fuel economy, the bore was decreased to maintain a displacement of 2.8 liters. The crankshaft from a 1990 3.1-liter GM V-6 engine was used to achieve a stroke increase from 2.99 inches to 3.31 inches. Because methanol has a higher octane rating than gasoline, the compression ratio was increased to 11 7:1 by installing custom flat-top pistons with a centered pin-bore. The piston material contains a high silicon content for low coefficient of thermal expansion, good wear resistance, and high-temperature strength. The top piston ring was changed to a chrome ring to maximize the amount of heat retained in the combustion chamber to enhance the vaporization of fuel. The oil ring was also changed to reduce friction. A custom camshaft was employed to compensate for the slow burn characteristics of methanol. The lobe centers and duration were changed to allow a longer burn time during the power stroke. Cam specifications are presented in Table 2. Roller-tip rocker arms were used to reduce friction and valve guide wear. To compensate for the increase in exhaust flow, a larger 2-1/4inch exhaust pipe diameter was used between the exhaust manifold and the catalytic converter. From the catalytic converter, the exhaust pipe diameter is 2-1/2 inches. Allied-Signal, Inc., Tulsa, Oklahoma, provided the specially designed light-off and main catalysts to control exhaust emissions. The light-off converter is located near the exhaust manifold in order to reach operating temperature as quickly as possible after engine start. Heated air from around the exhaust manifold is supplied to the air cleaner at temperatures below 30°C to enhance cold starting and driveability.

To increase fuel economy, the 5<sup>th</sup> gear ratio was lowered from 0.72:1 to 0.603:1. This resulted in a decrease in engine speed at 60 mph from 2200 to 1875 rpm. This modification takes advantage of the increased torque the engine produces. To prevent body roll in tight cornering, a larger sway bar and gas shocks were installed at the rear axle. These additions provided greater driving stability to the vehicle.

## 3. Engine Calibration and Fuel Properties

At program initiation after the engine was installed in the Corsica, chassis dynamometer testing was accomplished for engine/vehicle final calibration and performance evaluation. Rich conditions under deceleration were experienced and could not be corrected due to lack of electronic control module (ECM) deceleration table addresses. As a result, the vehicle experienced a slight idle instability after deceleration to a stop. The ECM calibration tables are included in Appendix A. Engine starting was acceptable at temperatures above 15°C, but considerable difficulty was experienced in starting the vehicle during winter conditions. As a result, the engine accumulated an abnormal amount of time under cold-cranking conditions with inadequate lubrication

A problem arose during the pretest engine dynamometer testing with the M100 fuel. This fuel had been stored for over a year, and upon opening a 55-gallon drum an atypical smell was noted as compared to that of M100 racing fuel. This fuel was used during the first series of dynamometer tests and the engine control system calibration

Cyl 1 Cyl 2 Cyl 3 Cyl 4 Cyl 5 Cyl 6 Variance Avg ntake & Exhaust Lobe Center Sep 111.1 111.0 110.9 110.8 111.1 111.1 111.0 0.3 Cam Deg Valve Overlap -27.6 -27.5 -27.2 -27.2 -27.8 -28.0-27.50.4 Crank Angle ntake Valve Opening -7.8 -7.8 -7.6 **-**7.6 -7.9 -8 -7.8 0.2 Deg BTDC

104.3

22.2

194.6

0.25988

0.38982

34

117.3

-19.6

194.4

0.25906

0.38858

18.53

18.61

104.5

22.2

194.3

0.25854

0.38781

18.47

34.1

117.6

-19.9

194.2

0.25902

0.38852

18.46

104.5

22.1

194.1

0.2585

0.38776

34

117.5

-20

194

0.25906

0.38858

18.44

18.45

104.5

22.3

194.5

0.25957

0.38936

18.57

34.1

117.5

-19.8

194.3

0.25914

0.38871

18.49

0.1

0.2

0.3

0.09

0.1

0.1

0.2

0.2

0.05

0.00016

0.00024

0.00091

0.00136 Inch

Deg ATDC

Deg ABDC

Crank Deg

In \* Deg

Deg BTDC

Deg ATDC

Deg ABDC

Crank Deg

Inch

nch

in \* Deg

Inch

Table 2. Camshaft Specifications as Measured with the Cam Doctor

104.6

22.5

194.7

0.26031

0.39047

18.61

34.1

117.5

-19.8

194.3

0.25933

18.47

0.389

104.5

22.5

194.7

0.26028

0.39041

18.64

34.2

117.5

-19.8

194.4

0.25917

0.38876

18.54

104.4

22.2

194.6

0.25992

0.38988

18.63

33.9

117.4

-19.6

194.3

0.25921

0.38882

18.5

Lobe Center

Valve Closure

Max Cam Lift

Net Valve Lift

Valve Opening

Lobe Center

Duration

Valve Closure

Max Cam Lift

Net Valve Lift

Lobe Area

Lobe Area

**Exhaust** 

Duration

was difficult due to extremely rich conditions and exhaust temperatures were lower than typical. After a few minutes of operation the  $\rm O_2$  sensor failed. The fuel was then tested using a procedure developed by V-P Hydrocarbons, which involves the addition of 10 parts hydrochloric acid and calcium chloride solution, 5 parts phenolphtalein and methanol solution, and 10 parts sodium hydroxide solution to 30 parts of the tested methanol. The result was a very cloudy solution, which, according to the test protocol, was unacceptable. Laboratory-grade methanol (99.98%) was also tested and resulted in a clear solution. The fuel was also used in the vehicle after the engine was reinstalled. When driving, a wide variance in the block learn memory was noted; thus, the engine idle was erratic and unstable. Occasionally, the engine would die during rapid acceleration.

Air Products and Chemicals, Allentown, Pennsylvania, which was providing the M100 for the program at no cost, was contacted and two samples of the fuel were sent to them for analysis. Gas chromatographic analysis of the samples did not disclose any obvious reasons why this fuel did not perform satisfactorily in the Corsica. This fuel was discarded and fresh fuel from the Air Products facility in LaPorte, Texas, was used during the remainder of the program without any further problems. Table 3 shows assays of the typical product and the two samples analyzed by Air Products.

**Table 3. Methanol Composition** 

| Constituent                               | M100 Assay (Wt.%) | Sample 1 (Wt. %) | Sample 2 (Wt. %) |
|-------------------------------------------|-------------------|------------------|------------------|
| 1. Methanol                               | 96.590            | 97.030           | 97.060           |
| 2. Dissolved Gases (Air+CO <sub>2</sub> ) | 0.126             | 0.000            | 0.000            |
| 3. Dimethyl Ether                         | 0.012             | 0.000            | 0.000            |
| 4. Methyl Formate                         | 0.924             | 0.700            | 0.700            |
| 5. Water                                  | 0.605             | 0.550            | 0.550            |
| 6. Ethanol                                | 0.678             | 0.630            | 0.640            |
| 7. Methyl Acetate                         | 0.166             | 0.140            | 0.130            |
| 8. n-Propanol                             | 0.260             | 0.320            | 0.320            |
| 9. Methyl Ethyl Ketone                    | 0.048             | 0.010            | 0.010            |
| 10. SEC-Butanol                           | 0.029             | 0.040            | 0.030            |
| 11. ISO-Butanol                           | 0.036             | 0.030            | 0.030            |
| 12. N-Butanol                             | 0.137             | 0.120            | 0.120            |
| 13. ISO-Pentanol                          | 0.038             | 0.070            | 0.060            |
| 14. 1-Pentanol                            | 0.080             | 0.060            | 0.060            |
| 15. N-Hexanol                             | 0.034             | 0.030            | 0.020            |
| 16. Aliphatic Oil                         | 0.235             | 0.010            | 0.040            |
| 17. Isopropanol                           | 0.000             | 0.010            | 0.010            |
| 18. t-Butanol                             | 0.000             | 0.006            | 0.008            |
| 19. Unknowns                              | 0.000             | 0.240            | 0.210            |

## 4. Mileage Accumulation

The mileage accumulation phase of the project occurred between the initial and final Federal Test Procedure (FTP) testing at Southwest Research Institute (SwRI) (from January 1993 to December 1994). The vehicle was driven under city and highway conditions and relatively few problems were experienced. The hydraulic clutch slave cylinder failed during a full-throttle acceleration drive and the mass air-flow sensor was replaced after the mounting boss broke. The vehicle pulled a two-wheel trailer loaded with two 55-gallon drums of methanol from Lubbock to San Antonio, Texas and Lubbock to Austin, Texas with exceptional performance. Figure 1 shows the Corsica during a road trip to San Antonio. Note the fuel trailer necessary for long trips. The vehicle was exhibited during the 4<sup>th</sup> Annual Texas Alternative Fuels Market Fair and Symposium in Austin on June 6-8, 1993, and participated in the 1993 Fourth of July parade in Lubbock, Texas. Figure 2 shows the vehicle on display at the Market Fair in Austin, Texas.

The only serious problem encountered during the mileage accumulation phase of the program was related to fuel pump failures. In March 1994 the original fuel pump in the vehicle failed. This pump had been in the vehicle since the inception of the long-term methanol program but was the third pump installed in the vehicle during the two years of competition (1989-1990). At the time of failure this pump had been in service for approximately two years. Contact with AC Rochester at the time of failure indicated that this particular pump was subject to electrical contact corrosion in which copper from the electrical contact was taken into solution with the methanol. When



Figure 1. Test vehicle during road trip to San Antonio



Figure 2. Test vehicle on display at the 4th Annual Texas Alternative Fuels Market Fair and Symposium in Austin

the amount of copper reached a certain level it appeared to precipitate out of solution and clog the pump, rendering it inoperative.

The failed pump was replaced with a new pump obtained from AC Rochester. The replacement pump lasted only a few minutes before it also failed. AC Rochester personnel indicated that some pumps were manufactured with inadequate plating and that the type of failure experienced with this second pump was characteristic of this manufacturing problem. A third pump obtained from AC Rochester was then installed in the vehicle in late June 1994. This pump also failed shortly thereafter (approximately two weeks). This pump was returned to AC Rochester and from there was passed on to the General Motors Corporation (GM) Fuels and Lubricants Department for analysis. A fuel sample was also sent to GM since it was suggested that the M100 might be contributing to the failures. Personnel from Air Products and Chemicals were also brought into the failure analysis discussions at this time since they provided the M100 for the program. No report us to the results of this analysis was provided by GM.

A methanol-compatible fuel pump was then purchased from the local GM performance parts supplier. This pump was preconditioned by pumping gasoline through it for several hours before installing it in the vehicle. This pump performed satisfactorily for the remainder of the program (approximately six months).

# 5. Engine and Component Wear

Tear-down of the engine after the mileage accumulation showed indications of detonation in three cylinders and significant wear and scuffing on one cylinder wall. Cylinders 1, 2, and 6 showed normal wear of approximately 0.0005 in cylinder diameter. Figure 3 shows the piston from Cylinder 2 after removal from the engine. The pistons from Cylinders1 and 6 are similar. There is no indication of wear on the piston itself and the rings still show the initial marks and imperfections. Note also the dark portion of the top of the second ring, which indicates that only a portion of the ring surface was in contact with the cylinder wall. Finally, there is no indication of combustion products or carbon buildup between the first and second rings of pistons from Cylinders 1, 2, and 6.

Cylinders 3 and 5 showed evidence of some detonation. The undersides of both pistons were lightly discolored, indicating excess heating typical of the higher temperatures produced by detonation. The rod bearings from these cylinders also showed some deformation typical of detonation. The piston from Cylinder 3 is shown in Figure 4. Note the dark deposits between the first and second rings. These deposits often result from detonation-produced flutter of the top piston ring. Also note that the top ring is very polished which indicates more than normal wear.



Figure 3. Side view of piston from Cylinder 2



Figure 4. Side view of piston from Cylinder 3



Figure 5. Side view of piston from Cylinder 4



Figure 6. View of piston from Cylinder 4

Cylinder 4 showed the most significant abnormal wear. Views of the piston from Cylinder 4 are shown in Figures 5 and 6. Both the top and second ring show polished surfaces, indicating excessive wear for 22,000 miles of operation. There are almost no signs of the original markings on the rings. Some indication of scuffing of the piston surface between the rings is also apparent. Scuffing of the piston below the oil ring is clearly evident in Figure 6. The wall of Cylinder 4, depicted in Figure 7, clearly shows excessive scuffing. Note that the scuffing extends all the way to the top of the cylinder, above the highest position of the top ring. The scuffs in the cylinder become more pronounced at a point on the cylinder wall which coincides with the piston location a few crankshaft degrees past TDC, approximately where the force on the piston due to the combustion gases rapidly increases. The bottom of Piston 4 showed excessive heating and the rod bearings from Cylinder 4 were deformed in a manner typical of detonation. Cylinder 4 experienced the most severe detonation. Figure 8 shows the combustion chamber for Cylinder 4. Note the absence of the ceramic insulator in the spark plug. The insulator was probably dislodged by detonation. Otherwise the combustion chamber was clean and relatively free of deposits.

The wear experienced in Cylinder 4 and, to a lesser extent, in Cylinders 3 and 5 (see Tables 4 and 5), is thought to be related to the washing down of the cylinder walls by fuel during coldstarting. The engine was very difficult to start during the winter



Figure 7. View of cylinder wall in Cylinder 4



Figure 8. Cylinder head showing Cylinder 4 combustion chamber

Table 4. Short-Block Measurements Before Mileage Accumulation

|                             |               | Cylinder   | block       |               |                   | _          |
|-----------------------------|---------------|------------|-------------|---------------|-------------------|------------|
| Cylinder bore diameter      | Cyl 1         | Cyl 2      | Cyl 3       | Cyl 4         | Cyl 5             | Cyl 6      |
| Тор                         | 3.3303        | 3.3309     | 3.3303      | 3.3305        | 3.3305            | 3.3305     |
| Bottom                      | 3.3306        | 3.3309     | 3.3306      | 3.3312        | 3.3306            | 3.3309     |
| Main bore (all ±0.000       | 5 in)         | 2.847 in   |             |               |                   |            |
| Deckheight (all ±0.00       | 01 in)        | 7.391 in   | D           | eck Milled    | 0.04 in           |            |
|                             |               | Connecti   | ng rods     |               |                   | . <u> </u> |
| Bore (all ± 0.0005 in)      | 2.12          | 25 in      | Mass 4      | 140 g         |                   |            |
| Length (all 0.0005 in       | ) 5.7         | in         |             |               |                   |            |
|                             |               | Pisto      | ns          |               |                   |            |
| Diameter (all ± 0.001       | in)           |            | Ring land   | clearance     | (all $\pm 0.0005$ | in)        |
| Top 3.3225 in               |               |            | Тор         | 0.0022 in     |                   |            |
| Middle 3.3241 in            |               |            | Middle      | 0.0015 in     |                   |            |
| Bottom 3.3264 in            |               |            |             | •             |                   |            |
| Mass 329 g                  |               |            | Piston He   | eight 1.4     | 416 in            |            |
|                             |               | Piston     | pins        |               |                   |            |
| Pin to piston bore cle      | arance (all ± | 0.0003 in) | 0.0008 in   | Ma            | ass 122 g         |            |
|                             |               | Piston     | rings       |               |                   |            |
| Gap (all ± 0.0005 in)       |               |            |             |               |                   | -          |
| Top 0.0135 in               |               |            | Mass 3      | 9 g           | ··· <del>·</del>  |            |
| Middle 0.0085 in            | ····          |            | Oil ring to | ension (pull) | 11.5—12.          | 0 lbf      |
|                             |               | Crank      | shaft       |               |                   |            |
| Rod journal (all ± 0.00     | 005 in) 1.9   | 983 in     |             |               |                   |            |
| Main journal (all $\pm$ 0.0 | 0005 in) 2.6  | 6468 in    |             |               |                   |            |
| Stroke (all ± 0.0003 in     | ) 3.3         | 31 in      |             |               |                   |            |
|                             |               | Rod bea    | arings      |               |                   |            |
| Thickness (all ± 0.000      | 5 in)         |            | Average     | clearance     | 0.002 in          |            |
| Max 0.0622 in               |               |            |             |               |                   |            |
| Min 0.0595 in               |               |            | Mass 3      | 3 g           |                   |            |
|                             |               | Main be    | arings      |               |                   |            |
| Thickness (all ± 0.000      | 5 in)         |            | Average     | clearance     | 0.002 in          |            |
| Max 0.0958 in               |               |            | Min 0       | .0929 in      |                   |            |

months when temperatures were below 7 to 10°C. Hence, starting involved cranking the engine for several minutes. During the long cranking times methanol was continuously injected into the cylinder and washed the lubricating oil from the cylinder walls. The oil sample analysis for the oil change after the winter months of mileage accumulation showed high engine wear.

Table 5. Short-Block Measurements After Mileage Accumulation

|                             |               | Cylinde    | r block      |               |             |        |
|-----------------------------|---------------|------------|--------------|---------------|-------------|--------|
| Cylinder bore diameter      | Cyl 1         | Cyl 2      | Cyl 3        | Cyl 4         | Cyl 5       | Cyl 6  |
| Тор                         | 3.3315        | 3.3311     | 3 3313       | 3.3316        | 3.3315      | 3.3315 |
| Bottom                      | 3.3308        | 3.331      | 3.3313       | 3.3312        | 3.331       | 3.3312 |
| Main bore (all $\pm 0.000$  | 15 in)        | 2.847 in   |              |               |             |        |
| Deck height (all ± 0.00     | 01 in)        | 7.391 in   | De           | eck Milled    | 0.04 in     |        |
|                             |               | Connec     | ting rods    |               |             |        |
| Bore (all $\pm 0.0005$ in)  | 2.1           | 25 in      | Mass 4       | 40 g          |             |        |
| Length (all $\pm 0.0005$ in | n) 5.7        | in         |              |               |             |        |
|                             |               | Pis        | tons         |               |             |        |
| Diameter (all ± 0.001 in)   |               |            | Ring land cl | earance (all  | ±0.0005 in) |        |
| Top 3.3225 in               |               |            | Тор          | 0.0022 in     |             |        |
| Middle 3.3241 in            |               |            | Middle       | 0.0015 in     |             |        |
| Bottom 3.3264 in            |               |            |              |               |             |        |
| Mass 329 g                  |               |            | Piston He    | ight 1.4      | 416 in      |        |
|                             |               | Pisto      | n pins       |               |             |        |
| Pin to piston bore cle      | arance (all ± | 0.0003 in) | 0.0008 in    | Ma            | ass 122 g   |        |
|                             |               | Pisto      | n rings      |               |             |        |
| Gap (all ± 0.0005 in)       |               |            |              |               |             |        |
| Top 0.0155 in               |               |            | Mass 3       | 9 <b>g</b>    |             |        |
| Middle 0.0105 in            |               |            | Oil ring to  | ension (pull) | 11.5—12.    | 0 lbf  |
|                             |               | Cran       | kshaft       |               |             |        |
| Rod journal (all $\pm 0.00$ | 005 in) 1.9   | 9983 in    |              |               |             |        |
| Main journal (all $\pm 0.0$ | 0005 in) 2.6  | 3468 in    |              |               |             |        |
| Stroke (all ± 0.0003 in     | n) 3.3        | 31 in      |              |               |             |        |
|                             |               | Rod b      | earings      |               |             |        |
| Thickness (all ± 0.0005 i   | n)            |            | A /erage     | clearance     | 0.002 in    |        |
| Max 0.0623 in               |               |            | 1            |               |             |        |
| Min 0.0598 in               |               |            | Mass 3       | 3 g           |             |        |
|                             |               | Main b     | earings      |               |             |        |
| Thickness (all ± 0.0005     | in)           |            | Average      | clearance     | 0.002 in    |        |
| Max 0.0958 in               |               |            | Min 0        | .0929 in      |             |        |

In addition to the cylinder wall, piston, and ring wear described above, the exhaust valve guides showed approximately 0.001 in wear, which is not considered excessive. The bearings showed normal wear other than the detonation-associated wear on the rod bearings in Cylinders 3, 4, and 5. Tables 4 and 5 present the detailed short-block measurements for before and after mileage accumulation, respectively. Similarly, Tables 6 and 7 present the cylinder head measurements. Oil sample analyses also

Cyl 1 Cyl 3 Cyl 5 Exhaust Intake **Exhaust** Intake **Exhaust** Intake 0.3131 0.3138 0.3139 0.3136 0.3138 0.3132 Valve stem dia (in) Valve dia (in) 0.315 0.3151 0.3151 0.3151 0.3149 0.3152 Installed height (in) 1.72 1.72 1.71 1.72 1.71 1.715 Shim thickness (in) 0.075 0.075 0.06 0.075 0.06 0.075 Spring coil bind (in) 1.19 1.19 1.19 1.19 1.19 1.19 Spring pressure ( lbf) 95 95 95 95 95 95 Retainer to seal (in) 0.54 0.54 0.54 0.54 0.54 0.54 Seal thickness (in) 0.16 0.16 0.16 0.16 0.16 0.16 Comb chamber (cc) 26.6 26.6 26.6 26.6 26.6 26.6 Cyl 2 Cyl 4 Cyl 6 Exhaust Intake **Exhaust** Intake **Exhaust** Intake Valve stem dia (in) 0.3135 0.3137 0.3138 0.3138 0.3138 0.3138 Valve dia (in) 0.3152 0.3152 0.3151 0.315 0.315 0.315 1.72 1.715 Installed height (in) 1.73 1.725 1.715 1.715 0.075 0.075 0.075 0.06 0.075 Shim thickness (in) 0.075 Spring coil bind (in) 1.19 1.19 1.19 1.19 1.19 1.19 95 95 Spring pressure (lbf) 95 95 95 95 0.54 0.54 0.54 0.54 0.54 Retainer to seal (in) 0.54 Seal thickness (in) 0.16 0.16 0.16 0.16 0.16 0.16 Comb chamber (cc) 26.6 26.6 27.2 26.6 26.8 26.6 Gasket surface milled (in) 0.04 Head gasket thickness (in) 0.068 472.38 Head gasket volume (cc) 11.56 Total swept volume (cc) 11.72

Table 6. Cylinder Head Measurements Before Mileage Accumulation

indicated high upper-cylinder wear. Oil sample analysis sheets are included in Appendix B.

Several oil leaks were noted around gaskets and seals. Figure 9 shows one such oil leak on the rear of the cylinder block. Perhaps the blowby of methanol into the crankcase during cold starting affected the gaskets and seals. All gaskets and seals have been sent to FEL-PRO for further analysis.

The detonation is thought to have been caused by injector wear. If the injectors experienced wear due to the low lubricity of methanol, they could have provided poor atomization of the fuel and/or too little fuel to some cylinders. Either condition could have provided an effectively lean mixture for some cylinders and thus promoted detonation in those cylinders. A visual inspection of the fuel injectors indicated that the injector for Cylinder 4 contained some foreign material in its exit. The injectors have been sent to SwRI for further testing and evaluation.

Compression ratio

Cyl 1 Cyl 3 Cyl 5 **Exhaust** Intake Exhaus: Intake **Exhaust** Intake 0.3139 0.3135 0.3138 Valve stem dia (in) 0.3131 0.3129 0.3138 0.3135 0.3136 0.3134 0.3137 0.3132 0.3129 0.3155 0.3155 0.3151 0.3155 0.3152 0.3168 0.3155 0.3158 0.3152 0.3152 0.315 0.3152 Valve dia (in) 1.72 1.72 1.71 1.72 1.71 1.715 Installed height (in) Shim thickness (in) 0.075 0.075 0.06 0.075 0.06 0.075 Spring coil bind (in) 1.19 1.19 1.19 1.19 1.19 1.19 95 95 Spring pressure (1bf) 95 95 95 95 Retainer to seal (in) 0.54 0.54 0.54 0.54 0.54 0.54 Seal thickness (in) 0.16 0.16 0.16 0.16 0.16 0.16 Comb chamber (cc) 26.6 26.6 26.6 26.6 26.6 26.6 Cyl 2 Cvl 4 Cyl 6 Exhaust Exhaust Exhaust Intake 0.3138 0.3135 0.3134 0.3136 0.3137 0 3135 0.3138 0.3132 0.3138 0.03136 0.3137 0.3134 Valve stem dia (in) 0.3168 0.3152 0.3156 0 3155 0.316 0.315 0.3155 0.3151 0.3155 Valve dia (in) 0.3153 0.315 0.3151 Installed height (in) 1.73 1.725 1.72 1.715 1.715 1.715 0.075 0.075 0.075 0.075 Shim thickness (in) 0.075 0.06 Spring coil bind (in) 1.19 1.19 1.19 1.19 1.19 1.19 Spring pressure (lbf) 95 95 95 95 95 95 0.54 Retainer to seal (in) 0.54 0.54 0.54 0.54 0.54 Seal thickness (in) 0.16 0.16 0.16 0.16 0.16 0.16 Comb chamber (cc) 26.6 26.6 27.2 26.6 26.8 26.6 Gasket surface milled (in) 0.04 Head gasket thickness (in) 0.068 Total swept volume (cc) 472,38 11.56 Head gasket volume (cc) Compression ratio 11.72

Table 7. Cylinder Head Measurements After Mileage Accumulation

# 6. Engine Performance

Engine performance at peak load was determined on a SuperFlow dynamometer before the engine was installed in the vehicle and again at the end of the mileage accumulation and after the final emissions and oil consumption tests were completed. Figures 10, 11 and 12 show the engine as mounted on the SuperFlow dynamometer. Corrected torque and power curves for the before and after tests are presented in Figures 13 and 14. Data from two runs during each test session on the dynamometer are shown. The low torque reading for one of the initial runs at 3750 rpm is due to fuel calibration. The calibration was adjusted and the curve smoothed, as the other initial data point for 3750 rpm indicates.

During the initial dynamometer tests the engine produced a maximum torque of 201 lbf-ft at 3750 rpm and a maximum power of approximately 161.5 hp at 5000 rpm. The end of project tests show maximum torque and power outputs of 192.4 lbf-ft at 4000 rpm and 155.4 hp at 5000 rpm. GM advertised the torque and power output of the stock 2.8-L engine on gasoline (with accessories) as 160 lbf-ft at 3600 rpm and 125 hp at 4500 rpm. These points are shown on the curves for reference. The engine showed



Figure 9. Rear of cylinder block showing oil leak



Figure 10. Engine mounted on SuperFlow dynamometer



Figure 11. Engine mounted on SuperFlow dynamometer



Figure 12. Engine mounted on SuperFlow dynamometer



Figure 13. Engine torque output



Figure 14. Engine power output



Figure 15. Vehicle during emissions tests at Southwest Research Institute

a decrease in maximum torque of about 4.3% and a decrease in maximum power of about 3.8% between the initial tests and the final tests. This amount of decrease is not considered unusual for 22,000 miles of operation; however, as was noted above, the engine suffered significant degradation in one cylinder.

# 7. Emissions And Fuel Economy

The vehicle was driven to SwRI in San Antonio, Texas, for full Environmental Protection Agency (EPA) FTP emissions testing at the beginning and completion of the program. Figure 15 depicts the vehicle during testing at SwRI. The emission test results at program initiation were very encouraging, with the vehicle meeting ultra-low emissions vehicle (ULEV) standards for all components except non-methane organic gases (NMOG). The pre- and post-test NMOG values are uncorrected since a reactivity adjustment factor (RAF) for M100 could not be obtained. Test results at program completion showed increased emissions for all exhaust components for all bags during the FTP testing, except non-methane hydrocarbons (NMHC). Emission results are given in Table 8. The SwRI reports are included in Appendix C.

The poorer emissions results during the second test are thought to have resulted from unburned fuel/air mixture that escaped the combustion process as a result of the scored

SwRI Test Jan. 1993 SwRi Test Dec. 1994 ULEV Constituent (gm/mi) (gm/mi) (grm/mi) 1. THC 0.48 1.167 2. CO 4.280 1.700 0.960 3. NO<sub>x</sub> 0.200 0.150 0.690 4. CH₄ 0.035 0.193 5. NMHC 0.011 0.004 6. Carbonyl 0.005 0.022 7. Alcohol 0.464 0.948 8. NMOG 0.479\* 0.975\* 0.040 0.008 9. Formaldehyde 0.0030 0.0200 10. Acetaldhyde 0.0002 0.0007 11. Acrolein 0.0000 0.0000 12. Acetone 0.0007 0.0012 13. Propionald 0.0000 0.0002 14. Crotonald 0.0000 0.0000 15. Isobutyr+MEK 0.00018 0.00064 16. Benzaldehyde 0.0000 0.0000 17. 0.0000 0.0000

**Table 8. Vehicle Emissions Results** 

0.4640

0.0000

Hexanalde

hyde 18. Methanol

19. Ethanol

and scuffed cylinder wall and top piston ring in Cylinder 4. Lubricating oil left on the cylinder wall also undoubtedly contributed to the increased emissions. Incomplete combustion and detonation are also thought to have occurred in this cylinder as evidenced by the damaged spark plug and combustion product contamination. The pistons from Cylinders 3 and 5 also showed evidence of leakage past the top ring, which also contributed to increased emissions. To determine whether degraded catalyst performance also contributed to the increased emissions, the catalyst was removed from the vehicle and sent to Allied-Signal for analysis. At the time that this report was prepared, Allied-Signal had not completed their evaluation.

0.9470

0.0000

Fuel economy was measured during the FTP tests and highway economy was estimated during trips to and from San Antonio. FTP city mileage was measured to be 9.91 mpg (19 mpeg) during initial testing in January 1993 and 9.73 mpg (18.65 mpeg) during final testing in December 1994. This corresponds to a change of -1.8%. Highway mileage was estimated to be 16 mpg (31 mpeg). The highway fuel economy rating for the stock gasoline vehicle was 29 mpg. The relatively small change in city fuel economy could be due to test variability only and could have nothing to do with vehicle

<sup>\*</sup> The RAF for M100 was unknown; thus, this value is uncorrected.

performance. No changes were made to the fuel-management control system during the program, and the O<sub>2</sub> exhaust sensor appeared to be operating properly during engine dynamometer testing; thus, if the vehicle fuel economy was actually reduced it was probably due to the degraded performance of Cylinder 4. Visual examination of the Cylinder 4 injector disclosed some discoloration and contaminate buildup, which may also have been due to the abnormal combustion process in this cylinder.

### 8. Oil Consumption Testing

The vehicle underwent initial oil consumption testing at SwRI in San Antonio. Initial tests were completed during March 1993 when the engine had logged about 1,500 miles. Additional oil consumption tests were completed during early 1995 after the vehicle had accumulated approximately 22,000 on-road miles. The SwRI oil consumption test reports are included in Appendices D and C. The initial test results reflect an oil consumption rate that is somewhat higher than typical gasoline-fueled vehicles that have been tested by SwRI. Data presented by Manni and Ciocci [3] also indicate that the initial oil consumption rate may have been higher than typical for gasoline fueled engines, especially at low engine speed. However, some of the data presented by Manni and Ciocci indicate oil consumption rates higher than those produced during the initial tests on the Corsica. In addition Roberts [4] presents results from an Exxon test that correlate well with the initial Corsica test results. Thus, although the initial oil consumption results for the M100-fueled Corsica may be on the high end of the range for typical gasoline engines, the oil consumption was not exceptionally high. The initial oil consumption rate may have been affected by the lack of engine operating time before the test. The excellent results achieved during the emissions testing in January 1993 would reasonably have been expected to correlate with low oil consumption.

It was noted that there appeared to be a relationship between engine deceleration and increased oil consumption during the tests. The amount of valve lubricating oil drawn into the intake manifold may have increased with the greater manifold vacuum during deceleration. The SwRI report mentioned a relationship between high-temperature engine operation and increased oil consumption. Roberts [4] indicates that oil consumption is strongly related to both oil viscosity and oil volatility. Lower oil viscosity and higher oil volatility both promote higher oil consumption. The test oil used by SwRI was a 10W-30-grade oil with a viscosity of 9.85 cS at 100°C. This value of 100°C viscosity is on the lower end of the viscosity range of the oils used in the tests reported by Roberts [4].

The oil consumption tests run after the mileage accumulation showed significant increases in the oil consumption rates. Table 9 presents a summary comparison of the results from the two tests. The largest increase in the oil consumption rate was 123.6%,

which was observed during steady-state operation at 2675 rpm. The increased oil consumption was almost certainly caused by the excessive scuffing and wear in Cylinder 4 and to a lesser extent by the wear in Cylinders 3 and 5. Moderate wear of the exhaust valve guides was noted earlier; however, there was no indication that the valve guide seals had deteriorated. Even the highest oil consumption rate reported by SwRI for the Corsica was only about 9% greater than oil consumption rates reported in reference [3] for gasoline engines. The condition of the engine at tear-down would indicate that the oil consumption should be even higher.

#### 9. Conclusions

Long-term testing of the M100-fueled 1988 Corsica confirmed several reasonably well understood conditions and disclosed a few anomalies that may warrant further study. These are listed below:

- A. It seems apparent that no off-the-shelf fuel pump is available that will provide reliable long-term service in M100. The problems appear to be primarily related to materials incompatibility with the fuel, but the lack of lubricity of M100 may also be factor contributing to fuel pump component wear. This lack of lubricity may have also been a factor in the (apparent) degraded performance of the injectors, which is thought to have led to detonation in Cylinders 3, 4, and 5. If M100 is to continue to be considered as an alternative fuel for the future, this problem needs to be investigated thoroughly.
- B. Cold-starting is a severe problem when using M100 as a fuel below ambient temperatures of 15°C. Cold cranking of the Corsica is thought to have led to the degraded condition in Cylinders 3, 4, and 5, which contributed to combustion product buildup between the first and second piston rings in these cylinders and scoring of the cylinder wall and piston scuffing in Cylinder 4. An effective solution for this problem must be identified if M100 is to be a viable alternative fuel.
- C. The results of the FTP emissions test at program initiation were excellent, with all exhaust constituents below ULEV levels except NMOG. Emissions at program conclusion were increased significantly as a result of the degraded condition of Cylinders 3, 4, and 5. Catalyst poisoning due to increased lubricating oil consumption may also have been a contributing factor. Allied Signal has agreed to evaluate the catalyst condition. The results of this evaluation will be forwarded to NREL when received.
- D. Based on the results of this research, M100 is considered to have excellent potential as an alternative fuel. Cold-starting problems and component wear due to lack of lubricity will have to solved, but M100 has the potential for excellent emissions and, with a properly designed engine, provides outstand-

- ing vehicle performance and fuel economy. No fuel safety or handling problems were encountered during the project. The one case of fuel degradation (one 55-gallon drum) is thought to have been related to long-term storage in relatively poor environmental conditions. No other fuel quality problems were encountered during the project.
- E. The initial oil consumption rates measured for the M100-fueled engine are on the upper end of the range typical of gasoline-fueled engines. The wear and damage experienced by the engine significantly affected the increase in the oil consumption rate.

#### 10 References

- 1. Truman, R., D. Bretherton, B. Smith, R. Taeuber, M. Walser, and J. Jones, Texas Tech 1989 SAE Methanol Marathon Entry, 1989.
- 2. Walser, M., R. Taeuber, G. Bourn, M. Kasik, J. Jones, and T. Maxwell, Texas Tech 1990 SAE Methanol Challenge Entry, 1990.
- 3. Manni, M. and G. Ciocci, An Experimental Study of Oil Consumption in Gasoline Engines, SAE Paper No. 922374.
- 4. Roberts, D. C., Section 4.7 Review of Oil Consumption Aspects of Engines, Engine Oils and Automotive Lubrication, edited by Wilfried J. Bartz, Marcel Dekker, Inc., New York, 1993.

# APPENDIX A ECM Calibration Tables

**Table F1 Main Spark Advance vs. LV8 - Load Conversion Equation N = E \* 256 / 90** 

|              | 400 rpm   |             | 1           | 600 rpm  |             | T           | 800 rpm  |             |             | 1000 rpm       |             | 1            | 1200 rpm   |             |
|--------------|-----------|-------------|-------------|----------|-------------|-------------|----------|-------------|-------------|----------------|-------------|--------------|------------|-------------|
| 16 BK        | Decimal   | Engineering | 16 Bit      | Decimal  | Engineering | 16 Bit      | Decimal  | Engineering | 16 Bit      | Decimel        | Engineering | 16 Bit       | Decimal    | Engineering |
| Heddeolmei   | Computer  | Unit        | Hexideolmei | Computer | Unit        | Hexidecimal | Computer | Unit        | Hexidecimal | Computer       | Unit        | Hexidecimal  | Computer   | Unit        |
| Address      | Unit      | (deg.)      | Address     | Unit     | (deg.)      | Address     | Unik     | (deg.)      | Address     | Unit           | (deg.)      | Address      | Unit       | (deg.)      |
| 8011         | 63        | 22          | 801D        | 63       | 22          | 8029        | 63       | 22          | 8035        | 63             | 22          | 8041         | 63         | 22          |
| 8012         | 63        | 22          | 601E        | 63       | 22          | 802A        | 63       | 22          | 8036        | 63             | 22          | 8042         | 63         | 22          |
| 8013         | 63        | 22          | 801F        | 63       | 22          | 802B        | 63       | 22          | 8037        | 63             | 22          | 8043         | 63         | 22          |
| 8014         | 63        | 22          | 5020        | 63       | 22          | 802C        | 63       | 22          | 8038        | 63             | 22          | 8044         | 63         | 22          |
| 8015         | 63        | 22          | 8021        | 63       | 22          | 802D        | 63       | 22          | 8039        | 63             | 22          | 8045         | 63         | 22          |
| 8016         | 67        | 20          | 8022        | 57       | 20          | 802E        | 57       | 20          | 803A        | <del>5</del> 7 | 20          | 8046         | 57         | 20          |
| 8017         | 51        | 18          | 8023        | 51       | 18          | 802F        | 51       | 18          | 803B        | 51             | 18          | 8047         | 51         | 18          |
| 8018         | 51        | 18          | 8024        | 51       | 18          | 8030        | 51       | 18          | 803C        | 51             | 18          | 8048         | 51         | 18          |
| 8019         | <b>61</b> | 18          | 8025        | 51       | 18          | 8031        | 61       | 18          | 803D        | 51             | 18          | 8049         | 51         | 18          |
| 801A         | 48        | 17          | 8026        | 48       | 17          | 8032        | 48       | 17          | 803E        | 48             | 17          | 804A         | 51         | 18          |
| <b>6</b> 01B | 43        | 16          | 8027        | 43       | 15          | 8033        | 43       | 15          | 803F        | 43             | 15          | 804B         | 46         | 16          |
| 801C         | 34        | 12          | 8028        | 34       | 12          | 8034        | 34       | 12          | 8040        | 34             | 12          | 804C         | 34         | 12          |
|              | 1400 rpm  |             |             | 1600 rpm |             |             | 1800 rpm |             |             | 2000 rpm       |             |              | 2200 rpm   |             |
| 16 BR        | Decimal   | Engineering | 16 Bit      | Decimal  | Engineering | 16 BH       | Decimal  | Engineering | 16 BH       | Decimal        | Engineering | 16 BH        | Decimel    | Engineering |
| Heddeolmel   | Computer  | Unit        | Hexidecimal | Computer | Unit        | Hexidecimal | Computer | Unit [      | Hexidecimal | Computer       | Unit        | Hexidecimal  | Computer   | Unit        |
| Address      | Unit      | (deg.)      | Address     | Unit     | (deg.)      | Address     | Unit     | (deg.)      | Address     | Unit           | (deg.)      | Address      | Unit       | (deg.)      |
| 804D         | 65        | 23          | 8059        | 77       | 27          | 8065        | 77       | 27          | 8071        | 80             | 28          | <b>90</b> 7D | 80         | 26          |
| 804E         | 66        | 23          | 805A        | 80       | 28          | 8066        | 85       | 30          | 8072        | 91             | 32          | 807E         | 91         | <b>32</b>   |
| 804F         | 66        | 23          | 805B        | 80       | 28          | 8087        | 85       | 30          | 8073        | 91             | 32          | 807F         | <b>9</b> 1 | 322         |
| 8050         | 65        | 23          | 806C        | 80       | 26          | 8068        | 85       | 30          | 8074        | 91             | 32          | 8080         | 91         | 322         |
| 8051         | 66        | 23          | 806D        | 80       | 26          | 8069        | 85       | 30          | 8075        | 91             | 32          | 8061         | 91         | 322         |
| 8052         | 65        | 23          | 805E        | 80       | 26          | 808A        | 85       | 30          | 8076        | 91             | 32          | 8082         | 91         | <b>32</b>   |
| 8068         | 65        | 23          | 806F        | 80       | 26          | 6068        | 82       | 29          | 8077        | 88             | 31          | 8083         | 91         | 32          |
| 8054         | 66        | 23          | 8060        | 80       | 26          | 806C        | 80       | 28          | 8078        | 85             | 30          | 8084         | 88         | 31          |
| 8066         | 66        | 23          | 8061        | 71       | 25          | 606D        | 74       | 26          | 8079        | 74             | 26          | 8085         | 80         | 26          |
| <b>8056</b>  | 57        | 20          | 8082        | 65       | 23          | 806E        | 65       | 23          | 807A        | 65 (66)        | 23 (24)     | 8086         | 71         | 25          |
| 8057         | 48        | 16          | 8063        | 67       | 20          | 806F        | 57       | 20          | 807B        | 54 (60)        | 19 (21)     | 8067         | 54 (65)    | 19 (23)     |
| 8058         | 37        | 13          | 8064        | 41       | 14.4        | 8070        | 43       | 15          | 807C        | 40 (49)        | 14 (17.2)   | 8068         | 40 (52)    | 14 (18.3)   |

<sup>( )</sup> Designates Original Value

Table F1 Main Spark Advance vs. LVS - Load (Continued)

|             | 2400 rpm   |             |                    | 2800 rpm |             |             | 3200 rpm   |             |                | 3600 rpm      |                |              | 4000 rpm |             |
|-------------|------------|-------------|--------------------|----------|-------------|-------------|------------|-------------|----------------|---------------|----------------|--------------|----------|-------------|
| 16 BK       | Decimal    | Engineering | 16 Bit             | Decimal  | Engineering | 16 Bit      | Decimal    | Engineering | 16 Bit         | Decimal       | Engineering    | 16 Bit       | Decimal  | Engineering |
| Herddeolmal | Computer   | Unit        | <b>Hexideoimal</b> | Computer | Unit        | Hexidecimal | Computer   | Unit        | Hexidecimal    | Computer      | Unit           | Hexideolmel  | Computer | Unit        |
| Address     | Unit       | (deg.)      | Address            | Unit     | (deg.)      | Address     | Unit       | (deg.)      | Address        | Unit          | (deg.)         | Address      | Unit     | (deg.)      |
| 8089        | 93         | 32.7        | 8095               | 86       | 30          | 80A1        | 85         | 30          | 80AD           | 85            | 30             | 8089         | 85       | 30          |
| BOBA        | 91         | 32          | 8098               | 94       | 33          | 80A2        | 94         | 33          | 80AE           | 91            | 32             | 80BA         | 91       | 32          |
| 8006        | 94         | 33          | 8097               | 94       | 33          | 80A3        | 94         | 33          | 80AF           | 91            | 32             | 8088         | 91       | 32          |
| 808C        | 94         | 33          | 9098               | 94       | 33          | 80A4        | 94         | 33          | 60B0           | 88            | 31             | 808C         | 85       | 30          |
| 8060        | 94         | 33          | 8099               | 94       | 33          | 80A5        | 88         | 31          | 80B1           | 86            | 30             | <b>60B</b> D | 82       | 29          |
| 806E        | 91         | 32          | 809A               | 91       | 32          | 80A6        | 88         | 31          | 60B2           | 82            | 29             | 60BE         | 82       | 29          |
| 606F        | 90         | 31.6        | 809B               | 66       | 31          | 80A7        | 85         | 30          | 80B3           | 82            | 29             | <b>BOBF</b>  | 82       | 29          |
| 8090        | 66         | 31          | 809C               | 88       | 31          | 80A8        | 65         | 30          | 80B4           | 82            | 29             | 8000         | 82       | 29          |
| 8091        | 85         | <b>30</b> . | 809D               | 85       | 30          | 80A9        | 82         | 29          | 80B5           | 80            | 26             | 80C1         | 82       | 29          |
| 8092        | 74         | 26          | 809E               | 74       | 26          | BOAA        | 74         | 26          | 8088           | 74            | 26             | 80C2         | 80       | 26          |
| 8093        | 57 (65)    | 20 (23)     | BOOF               | 57 (65)  | 20 (23)     | BOAB        | 63 (66)    | 22 (24)     | 8087           | 65 (71)       | 23 (26)        | 80C3         | 68 (74)  | 24 (26)     |
| 8094        | 49 (57)    | 17.2 (20)   | 80A0               | 48 (66)  | 17 (19.7)   | 80AC        | 51 (50)    | 18 (19.7)   | 8088           | 50 (53)       | 17.5 (18.6)    | 80C4         | 51 (56)  | 18 (19.7)   |
|             | 4400 rpm   |             |                    | 4800 rpm |             |             |            |             |                |               |                |              |          | 1           |
| 16 BK       | Decimal    | Engineering | 16 BH              | Decimal  | Engineering | ļ           | LV8 - Load |             |                |               |                |              |          | j           |
| Heddeoimel  | Computer   | Unit        | <b>Hexideolmei</b> | Computer | Unit        | ŀ           | (for each  |             |                |               |                |              |          | 1           |
| Address     | Unit       | (deg.)      | Address            | Unit     | (deg.)      | Ĺ           | series)    | 1           | Main Spark Ti  | ming Calou    | iation         |              |          |             |
| 80C5        | 86         | 30          | 80D1               | 86       | 30          |             | 32         |             |                |               |                |              |          | ı           |
| 8006        | 91         | 32          | 8002               | 91       | 32          | İ           | 48         | 1           | Sperk Advenor  |               |                |              | -        |             |
| 8007        | 91         | 32          | 8003               | 91       | 32          | 1           | 64         |             | (deg. BTC)     | < Ta          | ble F1>        | < Table F    | 2 >      |             |
| 80C8        | <b>9</b> 1 | 32          | 80D4               | 88       | 31          | 1           | ∞          |             |                |               |                |              |          | 1           |
| 8009        | 86         | 30          | 8005               | 85       | 30          |             | 96         |             |                |               |                |              |          | 1           |
| BOCA        | 82         | 29          | 80D6               | 85       | <b>3</b> 0  |             | 112        |             |                |               |                |              |          | 1           |
| 80CB        | 82         | 29          | 80D7               | 85       | 30          | [           | 126        | 8           | Spark Timing R | lange la 60 d | leg. BTC to 10 | deg. ATC     |          |             |
| 80CC        | 82         | 29          | 80D8               | 85       | 30          | 1           | 144        |             |                |               |                |              |          | 1           |
| <b>8000</b> | 82         | 29          | 80D9               | 77       | 27          | 1           | 160        | F           | Reference Pula | e at 60 deg.  | BTC            |              |          | 1           |
| <b>BOCE</b> | 80         | 28          | 80DA               | 68       | 24          | - 1         | 176        |             |                |               |                |              |          | I           |
| BOOF        | 66 (74)    | 24 (26)     | 80DB               | 63 (68)  | 22 (24)     | Ī           | 192        |             |                |               |                |              |          |             |
| 8000        | 54 (60)    | 19 (21)     | 80DC               | 60 (66)  | 21 (23.2)   |             | 208        |             |                |               |                |              |          |             |

<sup>( )</sup> Designates Original Value

Table P2 Base Coolant Advance Correction vs. LV8 - Load Conversion Equation N = (E + KCTBIAS)\*256/90

| -16         | deg. C   |             | 4           | deg. C   |             | 8                | deg. C    |             | 20             | deg. C      |                 | 32            | deg. C   |             |
|-------------|----------|-------------|-------------|----------|-------------|------------------|-----------|-------------|----------------|-------------|-----------------|---------------|----------|-------------|
| 16 BK       | Decimal  | Engineering |             | Decimal  | Engineering | 16 Bit           | Decimal   | Engineering | 16 BH          | Deolmei     | Engineering     | 16 Bit        | Decimal  | Engineering |
| Handdeolmel | Computer | Unit        | Hexidecimal | Computer | Unit        | Hexideolmel      | Computer  | Unit        | Hexidecimal    | Computer    | Unit            | Hexidecimal   | Computer | Unit        |
| Address     | Unit     | (deg.)      | Address     | Unit     | (deg.)      | Address          | Unit      | (deg.)      | Address        | Unit        | (deg.)          | Address       | Unit     | (deg.)      |
| 80EA        | 111      | 4           | 80F3        | 111      | 4           | 80FC             | 105       | 1.8         | 8105           | 83          | -6              | 810E          | 89       | -4          |
| BOEB        | 111      | 4           | 80F4        | 111      | 4           | 80FD             | 106       | 1.6         | 8106           | 83          | -6              | 810F          | 69       | -4          |
| 80EC        | 111      | 4           | 80F5        | 111      | 4           | 80FE             | 105       | 1.8         | 8107           | 83          | -6              | 8110          | 89       | -4          |
| BOED        | 111      | 4           | 80F6        | 111      | 4           | 80FF             | 105       | 1.8         | 8108           | 83          | -6              | 8111          | 89       | -4          |
| SOEE        | 111      | 4           | 60F7        | 111      | 4           | 8100             | 106       | 1.8         | 8109           | 100         | 0               | 8112          | 100      | 0           |
| 80EF        | 114      | 6           | 80F8        | 114      | 5           | 8101             | 108       | 2.8         | 810A           | 100         | 0               | 8113          | 100      | 0           |
| 80F0        | 117      | 6           | 80F9        | 117      | 6           | 8102             | 111       | 4           | 810B           | 111         | 4               | 8114          | 105      | 1.8         |
| 80F1        | 119      | 6.7         | 80FA        | 119      | 6.7         | 8103             | 114       | 5           | 810C           | 114         | 5               | 8115          | 106      | 2.8         |
| 90E3        | 122      | 7.7         | 80FB        | 122      | 7.7         | 8104             | 117       | 6           | 810D           | 117         | в               | 8116          | 111      | 4           |
| 44          | deg. C   |             | 56          | deg. C   |             |                  | deg. C    |             | 80             | deg. C      |                 |               | deg C    |             |
| 16 BK       | Decimal  | Engineering | 16 BH       | Decimal  | Engineering | 16 BH            | Decimal   | Engineering | 16 BK          | Decimal     | Engineering     | 16 Bit        | Decimal  | Engineering |
| Heddeome    | Computer | Unit        | Hexideolmai | Computer | Unit        | Hexidecimal      | Computer  | Unit        | Hexidecimal    | Computer    | Unit            | Hexidecimal   | Computer | Unit        |
| Address     | Unit     | (deg.)      | Address     | Unit     | (deg.)      | Address          | Unit      | (deg.)      | Address        | Unit        | (deg.)          | Address       | Unit     | (deg.)      |
| 8117        | 89       | -4          | 8120        | 94       | -2          | 812 <del>9</del> | 100       | 0           | 8132           | 100         | 0               | 813B          | 100      | 0           |
| 8118        | 89       | -4          | 6121        | 94       | -2          | 812A             | 100       | 0 ]         | 8133           | 100         | 0               | 813C          | 100      | 0           |
| 8119        | 89       | -4          | 8122        | 94       | -2          | 812B             | 100       | 0           | 8134           | 100         | 0               | 613D          | 100      | 0           |
| 611A        | 89       | -4          | 8123        | 94       | -2          | 812C             | 100       | 0           | 8135           | 100         | 0               | 813E          | 100      | ٥           |
| 8118        | 100      | 0           | 8124        | 100      | 0           | 812D             | 100       | 0           | 8136           | 100         | 0               | 813F          | 100      | 0           |
| 811C        | 100      | 0           | 8125        | 100      | 0           | 812E             | 100       | 0           | 8137           | 100         | 0               | 8140          | 100      | 0           |
| 811D        | 102      | 0.7         | 8126        | 100      | 0           | 812F             | 100       | 0           | 813 <b>8</b>   | 100         | 0               | 8141          | 100      | 0           |
| 811E        | 102      | 0.7         | 8127        | 102      | 0.7         | 8130             | 100       | 0           | 8139           | 100         | 0               | 8142          | 100      | 0           |
| 811F        | 108      | 2.8         | 8128        | 106      | 1.8         | 8131             | 100       | 0           | 613A           | 100         | 0               | 8143          | 100      | <u> </u>    |
|             | deg. C   |             |             | deg. C   |             | -                |           |             |                |             |                 |               |          |             |
| 16 BK       | Decimal  | Engineering | 16 Bit      | Decimal  | Engineering | ŀ                | LV8 -Load |             |                |             |                 |               |          | •           |
| Heddeolmal  | Computer | Unit (      | Hexideolmel | Computer | Unit        | [                | (for each | •           | Main Spark Ti  | ming Calcul | lation          |               |          | I           |
| Address     | Unit     | (deg.)      | Address     | Unit     | (deg.)      | _                | peries )  |             |                |             |                 |               |          | Į.          |
| 8144        | 100      | 0           | 814D        | 100      | 0           | 1                | 0         |             |                | •           |                 | + Coolant Tim |          | - [         |
| 8145        | 100      | 0           | 814E        | 100      | 0           | - [              | 32        |             | ( deg. BTC )   | < 18        | ble F1>         | < Table F     | 2 >      | 1           |
| 6146        | 100      | 0           | 814F        | 100      | 0           |                  | 64        |             |                |             |                 |               |          | į.          |
| 8147        | 100      | 0           | 8150        | 100      | •           | }                | 96        | _           |                | D. 5        | Mar4.01 -       | A T 4 A A     |          | í           |
| 8148        | 100      | 0           | 8151        | 100      | 0           | 1                | 128       |             | coolant Timing | Blas : Func | tion of Coolean | t Temp. and M | IAP"     |             |
| 8149        | 100      | 0           | 8152        | 100      | 0           | j                | 160       |             |                |             |                 |               |          | j           |
| 814A        | 100      | 0           | 6153        | 94       | -2          | - 1              | 192       |             |                |             |                 |               |          | ì           |
| 8148        | 94       | -2          | 8164        | 91       | -9          | 1                | 224       |             |                |             |                 |               |          | j           |
| 814C        | 94       | -2          |             |          |             |                  | 256       |             |                |             |                 |               |          |             |

Table F200 Ct. (Open Loop) Base Pulse Inject vs. LV8 - Load and RPM Conversion Equation  $N=E^+66.636/6$ 

|             | 0 rpm                |              |             | 400 rpm   |              | 1           | 800 rpm   |              |             | 1200 rpm   |              |              | 1600 rpn  | 1            |
|-------------|----------------------|--------------|-------------|-----------|--------------|-------------|-----------|--------------|-------------|------------|--------------|--------------|-----------|--------------|
| 16 BK       | Decimal              | Engineering  | 16 BH       | Decimal   | Engineering  | 16 Bit      | Decimal   | Engineering  | 16 Bit      | Decimel    | Engineering  | 16 Bit       | Decimal   | Engineeri    |
| Haddeolmel  | Computer             | Unit         | Hexideolma  |           | Unit         | Hexidecimal |           |              | Hexidecima  | i Computer | Unit         | Hexidecima   | Compute   | r Unit       |
| Address     | Unit                 | (deg.)       | Address     | Unit      | (msec.)      | Address     | Unit      | (meec.)      | Address     | Unit       | (meec.)      | Address      | Unit      | (meec.)      |
| 8615        | 0                    | 0            | 8826        | 0         | 0            | 8837        | 0         | 0            | 8848        | 0          | 0            | 8659         | 0         | 0            |
| 8616        | Ø (13)               | 0.69 (1.0)   | 8827        | 9 (13)    | 0.69 (1.0)   | 8638        | 9 (13)    | 0.69 (1.0)   | 8849        | 9 (13)     | 0.69 (1.0)   | 885A         | 9 (13)    | 0.69 (1.0    |
| 8617        | 16 (28)              | 1.22 (2.1)   | 8828        | 16 (26)   | 1.22 (2.1)   | 8839        | 16 (26)   | 1.22 (2.1)   | 884A        | 16 (26)    | 1.22 (2.1)   | 885B         | 16 (28)   | 1.22 (2.1    |
| 8616        | 22 (45)              | 1.66 (3.4)   | 8829        | 22 (45)   | 1.68 (3.4)   | 883A        | 22 (45)   | 1.68 (3.4)   | 864B        | 22 (45)    | 1.68 (3.4)   | 885C         | 22 (45)   | 1.66 (3.4)   |
| 8619        | 49 (61)              | 3.74 (4.66)  | 882A        | 49 (61)   | 3.74 (4.65)  | 883B        | 49 (61)   | 3.74 (4.65)  | 884C        | 49 (61)    | 3.74 (4.65)  | 885D         | 49 (61)   | 3.74 (4.65   |
| <b>861A</b> | 67 (77)              | 5.11 (6.9)   | 882B        | 67 (77)   | 5.11 (5.9)   | 883C        | 67 (77)   | 5.11 (5.9)   | 884D        | 67 (77)    | 5.11 (5.9)   | 885E         | 67 (77)   | 5.11 (5.9)   |
| 861B        | 81 ( <del>94</del> ) | 6.18 (7.2)   | 882C        | 81 (94)   | 6.18 (7.2)   | 883D        | 81 (94)   | 6.18 (7.2)   | 884E        | 81 (94)    | 6.18 (7.2)   | 885F         | 81 (94)   | 6.18 (7.2)   |
| 861C        | 105 (110)            | 8.01 (8.4)   | 8820        | 106 (110) | 8.01 (8.4)   | 683E        | 105 (110) |              | 884F        | 106 (110)  | 8.01 (8.4)   | 8660         | 106 (110) | 8.01 (8.4)   |
| 861D        | 116 (125)            | 9.0 (9.6)    | 882E        | 118 (125) | 9.0 (9.5)    | 683F        | 118 (125) | 9.0 (9.5)    | 8850        | 118 (125)  | 9.0 (9.5)    | 8861         | 118 (125) | 9.0 (9.5)    |
| 861E        | 133 (141)            | 10.15 (10.8) | 882F        | 133 (141) | 10.15 (10.8) | 8640        | 133 (141) | 10.15 (10.8) | 8851        | 133 (141)  | 10.15 (10.8) | 8862         | 133 (141) | 10.15 (10.8  |
| 881F        | 155 (157)            | 11.83 (12)   | 8830        | 155 (157) | 11.83 (12)   | 8641        | 155 (157) | 11.83 (12)   | 8852        | 156 (157)  | 11.83 (12)   | 8863         | 155 (157) | 11.63 (12)   |
| 8620        | 170 (172)            | 12.97 (13.1) | 8631        | 170 (172) | 12.97 (13.1) | 8842        | 170 (172) | 12.97 (13.1) | 8853        | 170 (172)  | 12.97 (13.1) | 8664         | 170 (172) | 12.97 (13 1  |
| 8621        | 188                  | 14.34        | 8832        | 188       | 14.34        | 8849        | 186       | 14.34        | 8854        | 188        | 14.34        | 8865         | 188       | 14.34        |
| 8622        | 204                  | 15.6         | 8833        | 204       | 15.6         | 8844        | 204       | 15.6         | 8855        | 204        | 15.6         | 8866         | 204       | 15.6         |
| 8023        | 219                  | 16.7         | 8834        | 219       | 16.7         | 8845        | 219       | 16.7         | 8856        | 219        | 16.7         | 6867         | 219       | 16.7         |
| 8624        | 236                  | 17.9         | 8835        | 236       | 17.9         | 8846        | 235       | 17.9         | 8857        | 235        | 17.9         | 8868         | 235       | 17.9         |
| 8825        | 251                  | 19.15        | 8836        | 251       | 19.15        | 8847        | 251       | 19.15        | 8858        | 261        | 19.15        | 8869         | 261       | 19.15        |
|             | 2000 rpm             |              |             | 2400 rpm  |              |             | 2800 rpm  |              |             | 3200 rpm   |              |              | 3600 rpm  |              |
| 16 BK       | Decimal              | Engineering  | 16 Bit      | Decimal   | Engineering  | 16 BH       | Decimal   | Engineering  | 16 BH       | Decimal    | Engineering  | 16 BK        | Decimal   | Engineering  |
| Herddeolmel | Computer             | Unit         | Hexidecimal | Computer  | Unit         | Hexidecimal | Computer  | Unit         | Hexidecimal | Computer   |              | Hexidecimal  | Computer  | Unit         |
| Address     | Unit                 | (meec.)      | Address     | Unit      | (meec.)      | Address     | Unit      | (meec.)      | Address     | Unit       | (meec.)      | Address      | Unit      | (meec.)      |
| 886A        | 0                    | 0            | 887B        | 0         | 0            | 868C        | 0         | 0            | 0988        | 0          | 0            | 88AE         | 0         | 0            |
| 8068        | 9 (13)               | 0.89 (1.0)   | 887C        | 9 (13)    | 0.69 (1.0)   | 888D        | 9 (13)    | 0.69 (1.0)   | 889E        | 9 (13)     | 0.69 (1.0)   | 88AF         | 9 (13)    | 0.69 (1.0)   |
| 886C        | 16 (26)              | 1.22 (2.1)   | 867D        | 16 (26)   | 1.22 (2.1)   | 888E        | 16 (26)   | 1.22 (2.1)   | 889F        | 16 (26)    | 1.22 (2.1)   | 88B0         | 16 (26)   | 1.22 (2.1)   |
| 886D        | 22 (45)              | 1.68 (3.4)   | 887E        | 22 (45)   | 1.68 (3.4)   | 888F        | 22 (45)   | 1.68 (3.4)   | 68A0        | 22 (45)    | 1.68 (3.4)   | 88B1         | 22 (45)   | 1.68 (3.4)   |
| 806E        | 49 (61)              | 3.74 (4.65)  | 887F        | 49 (61)   | 3.74 (4.66)  | 8890        | 49 (61)   | 3.74 (4.65)  | 88A1        | 49 (61)    | 3.74 (4.65)  | 8882         | 49 (61)   | 3.74 (4.65)  |
| 886F        | 67 (77)              | 5.11 (5.9)   | 8880        | 67 (77)   | 5.11 (5.9)   | 8891        | 67 (77)   | 5.11 (5.9)   | 88A2        | 67 (77)    | 5.11 (5.9)   | <b>88</b> 83 | 67 (77)   | 5.11 (5.9)   |
| 8670        | 81 (94)              | 6.18 (7.2)   | 8881        | 81 (94)   | 6.18 (7.2)   | 8892        | 81 (94)   | 6.18 (7.2)   | 88A3        | 81 (94)    | 6.18 (7.2)   | 88B4         | 81 (94)   | 6.18 (7.2)   |
| 8671        | 105 (110)            | 8.01 (6.4)   | 6662        | 106 (110) | 8.01 (8.4)   | 8893        | 106 (110) | 8.01 (8.4)   | 88A4        | 105 (110)  | 8.01 (8.4)   | 88B6         | 105 (110) | 8.01 (8.4)   |
| 6672        | 118 (126)            | 9.0 (9.5)    | 8883        | 118 (125) | 9.0 (9.5)    | 8894        | 118 (125) | 9.0 (9.5)    | 88A6        | 118 (125)  | 9.0 (9.6)    | 88B6         | 118 (125) | 9.0 (9.5)    |
| 8673        | 133 (141)            | 10.15 (10.8) | 8884        | 133 (141) | 10.15 (10.8) | 8895        | 133 (141) | 10.15 (10.8) | 88A6        | 133 (141)  | 10.15 (10.8) | 88B7         | 133 (141) | 10.15 (10 8) |
| 8674        | 155 (157)            | 11.63 (12)   | 8885        | 155 (157) | 11.89 (12)   | 8896        | 165 (157) | 11.83 (12)   | 88A7        | 155 (157)  | 11.83 (12)   | 8888         | 155 (157) | 11 89 (12)   |
| 9676        | 170 (172)            | 12.97 (13.1) | 6886        | 170 (172) | 12.97 (13.1) | 8897        | 170 (172) | 12.97 (13.1) | 88A8        | • •        | 12.97 (13.1) | 88B9         | 170 (172) | 12.97 (13.1) |
| 8676        | 186                  | 14.34        | 8887        | 188       | 14.34        | 8898        | 188       | 14.34        | 8649        | 188        | 14.34        | 88BA         | 188       | 14.34        |
| 8677        | 204                  | 15.6         | 8888        | 204       | 15.6         | 8899        | 204       | 15.6         | 88          | 204        | 15.6         | 66BB         | 204       | 15.6         |
| 8678        | 219                  | 16.7         | 8889        | 219       | 16.7         | 889A        | 219       | 16.7         | 88AB        | 219        | 16.7         | 88BC         | 219       | 16.7         |
| 8679        | 235                  | 17.9         | 888A        | 235       | 17.9         | 889B        | 235       | 17.9         | 88AC        | 235        | 17.9         | 88BD         | 235       | 17.0         |
| 867A        | 251                  | 19.15        | 888B        | 251       | 19.15        | 589C        | 251       | 19.15        | 88AD        | 251        | 19.15        | 88BE         | 251       | 19.15        |

Table F200 CL (Closed Loop) Base Pulse Inject vs. LV8 - Load Conversion Equation N = E \* 65.536 / 5

|            | 0 rpm     |              |      |                                                                                       |
|------------|-----------|--------------|------|---------------------------------------------------------------------------------------|
| 16 Bit     | Decimal   | Engineering  | LV8  |                                                                                       |
| Heddeoimei | Computer  | Unit         | Load |                                                                                       |
| Address    | Unit      | (meec.)      |      | Base Injection Pulse Width Calculation                                                |
| 8815       | 0         | 0            | 0    |                                                                                       |
| 8816       | 9 (13)    | 0.69 (1.0)   | 16   | BINJ PW Table Value * [(A/F)closed loop / (A/F)desired)]                              |
| 8817       | 16 (28)   | 1.22 (2.1)   | 32   | (Total PW/2) < Table F200 OL> < Table F50 >                                           |
| 8818       | 22 (45)   | 1.68 (3.4)   | 48   | or                                                                                    |
| 8819       | 49 (61)   | 3.74 (4.65)  | 64   | <teble cl="" f200=""></teble>                                                         |
| 881A       | 67 (77)   | 5.11 (5.9)   | 80   |                                                                                       |
| 8818       | 81 (94)   | 6.18 (7.2)   | 96   |                                                                                       |
| 861C       | 105 (110) | 8.01 (8.4)   | 112  | (A/F)closed loop / (A/F)desired >= 1                                                  |
| 881D       | 118 (125) | 9.0 (9.5)    | 128  |                                                                                       |
| 881E       | 133 (141) | 10.15 (10.8) | 144  | Simultaneous Double Fire Injection: 1 Injection / Crankshaft Revolution               |
| 881F       | 155 (157) | 11.83 (12)   | 160  |                                                                                       |
| 8820       | 170 (172) | 12.97 (13.1) | 176  | Delivered PW = BINJ [ Adeptive Mode * Decei Mode + Accel Mult. ] + CL Corr + Inj Corr |
| 8821       | 188       | 14.34        | 192  |                                                                                       |
| 8822       | 204       | 15.6         | 208  |                                                                                       |
| 8823       | 219       | 16.7         | 224  |                                                                                       |
| 8824       | 235       | 17.9         | 240  |                                                                                       |
| 6825       | 261       | 19.15        | 256  |                                                                                       |

Table F91 LV9 -Load Assel Enrichment Multiplier vs. Coolant Temp

Conversion Equation N = E \* 128

| 16 BH       | Decimal  | Engineering  | Coolant     |                                                                                       |
|-------------|----------|--------------|-------------|---------------------------------------------------------------------------------------|
| Hexideoimei | Computer | Unit         | Temperature |                                                                                       |
| Address     | Unit     | (% Chng.)    | deg. C      | Acceleration Enrichment Multiplier Calculation                                        |
| 876C        | 245 (96) | 1.92 (0.75)  | -40         |                                                                                       |
| 876D        | 245 (92) | 1.92 (0.72)  | -25         | Delivered PW = BINJ [ Adeptive Mode * Decei Mode + Accel Mult. ] + CL Corr + Inj Corr |
| 876E        | 235 (88) | 1.84 (0.89)  | -16         | - BPINJ                                                                               |
| 876F        | 191 (72) | 1.49 (0.56)  | -4          |                                                                                       |
| 8770        | 170 (64) | 1.33 (0.5)   | 8           | BPINJ - BPINJ + (BPINJ) (AE FACTOR)                                                   |
| 8771        | 150 (56) | 1.17 (0.44)  | 20          |                                                                                       |
| 8772        | 110 (40) | 0.88 (0.31)  | 32          | AE FACTOR = { (Load AE Mult. + Delta Throttle Poe. AE Mult. ) - Limit } - Decay Rate  |
| 8773        | 96 (36)  | 0.77 (0.26)  | 44          | < Table F91 > < Table F102>                                                           |
| 8774        | 85 (32)  | 0.664 (0.25) | 56          |                                                                                       |
| 8778        | 45 (16)  | 0.35 (0.125) | 68          |                                                                                       |
| 8776        | 42 (16)  | 0.33 (0.125) | 80          | Additional fuel delivered 'synchronously' with base PW - based on rapid changes in    |
| 8777        | 18 (8)   | 0.14 (0.06)  | 92          | measured etr/cytinder                                                                 |
| 6778        | 18 (8)   | 0.14 (0.06)  | 104         |                                                                                       |
| 8779        | 18 (8)   | 0.14 (0.08)  | 116         |                                                                                       |
| 877A        | 18 (8)   | 0.14 (0.06)  | 128         |                                                                                       |

#### Table F102 Delta Throttle Accel Enrichment Multiplier vs. Coclant Temp

Conversion Equation N = E \* 128

| 16 Bit<br>Hexideolmal | Decimal<br>Computer | Engineering<br>Unit | Coolant<br>Temperature |                                                                                      |
|-----------------------|---------------------|---------------------|------------------------|--------------------------------------------------------------------------------------|
| Address               | Unit                | (% Chng.)           | deg. C                 | Acceleration Enrichment Multiplier Calculation                                       |
| 846E                  | 255 (144)           | 1.99 (1.126)        | -40                    |                                                                                      |
| 846F                  | 255 (144)           | 1.99 (1.125)        | -28                    | Delivered PW = BINJ [ Adaptive Mode * Decel Mode + Accel Mult. ] + CL Corr + Inj Cor |
| 8470                  | 255 (128)           | 1.99 (1.0)          | -16                    | - BPINJ                                                                              |
| 8471                  | 255 (124)           | 1.99 (0.97)         | -4                     |                                                                                      |
| 8472                  | 245 (118)           | 1.91(0.92)          | 8                      | BPINJ = BPINJ + (BPINJ)(AE FACTOR)                                                   |
| 8473                  | 164 (80)            | 1.28 (0.625)        | 20                     |                                                                                      |
| 8474                  | 130 (64)            | 1.02 (0.6)          | 32                     | AE FACTOR = [(Load AE Mult. + Delta Throttle Poe. AE Mult.) - Limit] - Decay Rate    |
| 8476                  | 118 (58)            | 0.92 (0.44)         | 44                     | < Table F91 > < Table F102>                                                          |
| 8476                  | 92 (44)             | 0.72 (0.34)         | 66                     |                                                                                      |
| 8477                  | 66 (32)             | 0.52 (0.25)         | 68                     |                                                                                      |
| 8478                  | 50 (24)             | 0.39 (0.19)         | 80                     | Additional fuel delivered 'saynohronously' with base PW - based on rapid changes in  |
| 8479                  | 17 (10)             | 0.13 (0.08)         | 92                     | measured throttle position (TPS)                                                     |
| 847A                  | 17 (10)             | 0.13 (0.08)         | 104                    |                                                                                      |
| 847B                  | 17 (10)             | 0.13 (0.08)         | 116                    |                                                                                      |
| 647C                  | 17 (10)             | 0.13 (0.06)         | 128                    |                                                                                      |

Table F80 Cold Engine F/A % Ching vs. LV8 - Load and CLDEGFLT Conversion Equation N = % Change \* 2.56

| -26 deg. C   |                      | -4 deg. C   |             |                 | 20 deg C    |             |                | 44 deg. C   |               |                | 68 deg C                              |                     |                 |              |
|--------------|----------------------|-------------|-------------|-----------------|-------------|-------------|----------------|-------------|---------------|----------------|---------------------------------------|---------------------|-----------------|--------------|
| 16 BK        | Decimal              | Engineering |             | Decimal         | Engineering |             | Decimal        | Engineering |               | Decimal        | Engineering                           |                     | Decimal         | Engineering  |
| Heeddecimal  | Computer             | Unit        | Hexideoimai | Computer        | Unit        | Hexidecimal | Computer       | Unit        | Hexidecimal   | Computer       | Unit                                  | Hexidecimal         | Computer        | Unit         |
| Address      | Unit                 | (% Chng.)   | Address     | Unit            | (% Chng.)   | Address     | Unit           | (% Chng.)   | Address       | Unit           | (% Chng.)                             | Address             | Unit            | (% Ching)    |
| 86D9         | 33 (36)              | 13 (14)     | 86EA        | 31 (34)         | 12.3 (19.3) | 85FB        | 33 (36)        | 13 (14)     | 860C          | 12 (13)        | 4.5 (5)                               | 861D                | 0               | 0            |
| 86DA         | 33 (96)              | 13 (14)     | 86EB        | 31 (34)         | 12.3 (13.3) | 86FC        | 39 (36)        | 13 (14)     | 860D          | 29 (32)        | 11.5 (12.5)                           | 861E                | 0               | 0            |
| 8608         | 33 (36)              | 13 (14)     | 86EC        | 31 (34)         | 12.3 (15.3) | 86FD        | 33 (36)        | 13 (14)     | 860E          | 31 (34)        | 12.5 (13.3)                           | 861F                | 13              | 6            |
| 86DC         | 33 (36)              | 13 (14)     | 86ED        | 31 (34)         | 12.3 (13.3) | 85FE        | 33 (36)        | 13 (14)     | 860F          | 31 (34)        | 12.3 (19.3)                           | 8620                | 26              | 10           |
| <b>8</b> 500 | 36 (36)              | 14 (15)     | 85EE        | 33 (36)         | 13 (14)     | 86FF        | 33 (36)        | 13 (14)     | 8610          | 31 (34)        | 12.3 (13.9)                           | 8621                | 36              | 14           |
| 860E         | 37 (40)              | 14.6 (15.6) | 85EF        | 36 (38)         | 14 (15)     | 8600        | 36 (38)        | 14 (15)     | 8611          | 33 (36)        | 13 (14)                               | 8622                | 37              | 14.4         |
| 86DF         | <b>39</b> (42)       | 15.4 (16.4) | 85F0        | 37 (40)         | 14.6 (15.6) | 8601        | <b>36 (39)</b> | 14.2 (15.2) | 8612          | <b>36</b> (38) | 14 (15)                               | 8623                | 38              | 15           |
| 85EO         | 46 (48)              | 17.8 (18.8) | 85F1        | 44 (46)         | 17 (18)     | 8602        | 41 (44)        | 16 (17)     | 8613          | 37 (40)        | 14.6 (15.6)                           | 8624                | 40              | 15.6         |
| 85 E1        | 47 (50)              | 18.5 (19.5) | 85F2        | 46 (48)         | 17.8 (18.8) | 8603        | 46 (48)        | 17.8 (18.8) | 8614          | 39 (42)        | 15.4 (16.4)                           | 8625                | 41              | 16           |
| 86 E2        | 51 (54)              | 20 (21)     | 86F3        | 49 (52)         | 19.9 (20.3) | 8604        | 47 (50)        | 18.5 (19.5) | 8615          | 41 (44)        | 16 (17)                               | 8626                | 42              | 16 4         |
| 86 E3        | 55 (57)              | 21.3 (22.3) | 86F4        | 54 (58)         | 21 (22)     | 8605        | 49 (52)        | 19 3 (20 3) | 8616          | 47 (50)        | 18.6 (19.5)                           | 8627                | 43              | 16 8         |
| 86 E4        | 56 (5 <del>9</del> ) | 22 (23)     | 86F5        | 56 (58)         | 21.7 (22.7) | 8606        | 51 (54)        | 20 (21)     | 8617          | <b>49</b> (52) | 19.3 (20.3)                           | 8626                | 44              | 17           |
| 86 E5        | 59 (61)              | 23 (24)     | 86F6        | <b>57 (60)</b>  | 22.4 (23.4) | 8607        | 54 (56)        | 21 (22)     | 8618          | 51 (54)        | 20 (21)                               | 8629                | 44              | 17           |
| 86 E6        | 59 (61)              | 23 (24)     | 85F7        | 57 (60)         | 22.4 (23.4) | 8608        | 56 (56)        | 21.7 (22.7) | 8619          | 51 (54)        | 20 (21)                               | 862A                | 44              | 17           |
| 86 E7        | 59 (61)              | 23 (24)     | 85F8        | <b>57 (60</b> ) | 22.4 (23.4) | 8609        | 56 (58)        | 21.7 (22.7) | 861A          | 51 (54)        | 20 (21)                               | 8628                | 44              | 17           |
| 86 E8        | 59 (61)              | 23 (24)     | 85F9        | <b>57 (6</b> 0) | 22.4 (23.4) | 860A        | 56 (58)        | 21.7 (22.7) | 861B          | 51 (54)        | 20 (21)                               | 862C                | 44              | 17           |
| 96 E9        | 59 (61)              | 23 (24)     | 86FA        | 57 (60)         | 22.4 (23.4) | 860B        | 56 (58)        | 21.7 (22.7) | 861C          | 51 (64)        | 20 (21)                               | 862D                | 44              | 17           |
|              | dea C                |             |             | deg. C          |             |             |                |             |               |                |                                       |                     |                 | Ì            |
| 16 BR        | Decimal              | Engineering | 16 Bit      | Decimal         | Engineering |             | LV8 -Load      |             |               |                |                                       |                     |                 | ŀ            |
|              | Computer             |             | Hexideolmel | Computer        | Unit        | 1           | (for each      |             |               |                |                                       |                     |                 | Į.           |
| Address      | Unit                 | (% Chng.)   | Address     | Unit            | (% Chng.)   | -           | series)        | _           | pen Loop F/A  | . Calaudada    |                                       |                     |                 | - 1          |
| 962E         | 0                    | 0           | 863F        | 0               | 0           |             | 0              | •           | pen Loop Fis  | Carchiago      | 71                                    |                     |                 |              |
| 962F         | 0                    | 0           | 8640        | 0               | 0           | 1           | 16             | _           |               | - O1 E/A       | I M Endah \ .                         | (%Enrich: Tin       | Out \ . (A      |              |
| 0630         | 13                   | 5           | 8641        | 13              | 5           | i           | 32<br>48       | Ç           | pen Loop F/A  |                | (76Emion.) +<br>( <b>Table F5</b> 0 > | Table F             |                 | OU. MOOS) ]] |
| 8681         | 26                   | 10          | 8642        | 26              | 10          | 1           | í              |             |               | •              | C TRUM FOU >                          | < 1800mm FC         | ) ( <b>&gt;</b> | 1            |
| 8632         | 36                   | 14          | 8643        | 36              | 14          | j           | 64             |             |               |                |                                       |                     |                 | 1            |
| 8633         | 37                   | 14.4        | 8644        | 37              | 14.4        | 1           | 80             |             |               |                |                                       |                     |                 | 1            |
| 8634         | 38                   | 15          | 8645        | 38              | 15          | j           | 98             |             |               |                |                                       |                     |                 | Į.           |
| 8686         | 30                   | 15.2        | 8646        | 38              | 15          |             | 112            | •/          | Endoh Time (  | ~ ^ ^ h        |                                       | load ava dasa       | ur fi motion    | ŀ            |
| 9636         | 40                   | 15.6        | 8647        | 38              | 15          | ſ           | 128            | 76          | ennon, Inno-C | ט כ-⊷ זעכ      | y a precessim                         | ined exp. deca      | ly lunction     | i            |
| 8637         | 40                   | 15.6        | 8648        | 38              | 15          | 1           | 144            | •           | Enrichment    | - 1 at nois    | ut uthere elega                       | d loop switche      |                 | - 1          |
| 8638         | 40                   | 15.6        | 8649        | 38              | 15          | ì           | 160            | 74          | Enrichment -  | ·> rection     | IL MINNE CIUSE                        | u loop switche      | •               | 1            |
| 8639         | 40                   | 15.6        | 864A        | 38              | 15          | ŀ           | 176            |             |               |                |                                       |                     |                 | J            |
| 863A         | 40                   | 15.6        | 864B        | 38              | 16          | J           | 192            |             |               |                |                                       |                     |                 | - 1          |
| 8636         | 40                   | 15.6        | 864C        | 38              | 15          | 1           | 206            |             |               |                |                                       |                     |                 | 1            |
| 863C         | 40                   | 15.6        | 864D        | 38              | 15          | 1           | 224            |             |               |                |                                       |                     |                 | 1            |
| 903D         | 40                   | 15.6        | 864E        | 38              | 15          | 1           | 240            |             |               |                |                                       |                     |                 | }            |
| 863E         | 40                   | 15.6        | 864F        | 38              | 16          |             | 256            |             |               |                | فالمستوية بالمستويرات                 | سبسب الدرسيس البراد |                 |              |

Table F61 Time Out F/A % Ching Init Value vs. Coolant Temp Conversion Equation N = % Change \* 1.28

| 16 Bit      | Decimal   | Engineering | Coolant     |                                                                              |
|-------------|-----------|-------------|-------------|------------------------------------------------------------------------------|
| Hexidecimal | Computer  | Unit        | Temperature |                                                                              |
| Address     | Unit      | (% Chng.)   | deg. C      | Open Loop F/A Calculation                                                    |
| 8650        | 150 (160) | 117.2 (125) | -40         |                                                                              |
| 8661        | 150 (160) | 117.2 (125) | -28         | Open Loop F/A = C.L. F/A [ (%Enrich.) + (%Enrich. Time-Out ) + (Add. Mode) ] |
| 8652        | 128 (139) | 100 (108.6) | -16         | < Table F50 > < Table F51>                                                   |
| 8663        | 100 (112) | 78 (87.5)   | -4          |                                                                              |
| 8654        | 49 (56)   | 36 (44)     | 8           | Closed Loop F/A Calculation                                                  |
| 8655        | 35 (42)   | 27 (33)     | 20          |                                                                              |
| 8656        | 23 (28)   | 18 (22)     | 32          | Closed Loop F/A = C.L. Stoloh F/A [ 1 + (%Enrich. Time-Out ) ]               |
| 8657        | 16 (22)   | 14 (17)     | 44          | < Table F51 >                                                                |
| 8658        | 13 (16)   | 10 (12.5)   | 58          |                                                                              |
| 8659        | 13 (16)   | 10 (12.5)   | 68          |                                                                              |
| 865A        | 13 (16)   | 10 (12.5)   | 80          |                                                                              |
| 8668        | 11 (14)   | 8.6 (11)    | 92          | %Enrich. Time-Out> 0 by a predetermined exp. decay function                  |
| 866C        | 11 (14)   | 8.6 (11)    | 104         |                                                                              |
| 865D        | 11 (14)   | 8.6 (11)    | 116         |                                                                              |

#### Table F64 Crank Fuel PW vs. Coolant Temperature

Conversion Equation N = E \* 256 / KSCAL64

| 16 Bit      | Decimal   | Engineering | Coolant     |                                                                           |
|-------------|-----------|-------------|-------------|---------------------------------------------------------------------------|
| Hexidecimal | Computer  | Unit        | Temperature |                                                                           |
| Address     | Unit      | (maec.)     | deg. C      |                                                                           |
| 86 E6       | 163 (179) | 119 (131)   | -40         | Cranking Fuel Pulse Width Calculation                                     |
| 86 E7       | 156 (172) | 114 (126)   | -26         |                                                                           |
| 86 E8       | 135 (148) | 99 (108.4)  | -16         | Crank PW / Rev = (Crank PW) (Crank PW Time - Out) (Constant)              |
| 86 E9       | 96 (105)  | 70 (77)     | -4          | < Table F64 > < Table F65>                                                |
| 86 EA       | 78 (86)   | 57 (63)     | 8           |                                                                           |
| ee EB       | 45 (48)   | 33 (35)     | 20          |                                                                           |
| 86 EC       | 37 (40)   | 27 (29)     | 32          | Crank PW - Duration per crank revolution (1/2 total fuel / cylinder)      |
| 86 ED       | 30 (33)   | 22 (24)     | 44          |                                                                           |
| 86 EE       | 19 (21)   | 14 (15.4)   | 56          | At <450 rpm and <95 deg. F - 1/3 Crank PW injected 3 times per revolution |
| 86 EF       | 16 (18)   | 12 (13)     | 68          | · · · · · · · · · · · · · · · · · · ·                                     |
| 86F0        | 14 (16)   | 10 (12)     | 80          |                                                                           |
| 86F1        | 14 (16)   | 10 (12)     | 92          |                                                                           |
| 66F2        | 14 (16)   | 10 (12)     | 104         |                                                                           |
| 86F3        | 17 (19)   | 12.5 (14)   | 116         |                                                                           |

#### Table P65 Crank Fuel PW Multiplier vs. Reference Pulsee

Conversion Equation N = E \* 256

| 16 Bit      | Decimal   | Engineering | Crank     |                                                                           |
|-------------|-----------|-------------|-----------|---------------------------------------------------------------------------|
| Hexideoimel | Computer  | Unit        | Reference |                                                                           |
| Address     | Unit      | (meeo.)     | Pulses    |                                                                           |
| 86F4        | 170 (192) | 0.66 (0.75) | 0         |                                                                           |
| 86F5        | 106 (128) | 0.41 (0.5)  | 8         | Cranking Fuel Pulse Width Calculation                                     |
| 86F6        | 105 (128) | 0.41 (0.5)  | 16        |                                                                           |
| 86F7        | 106 (128) | 0.41 (0.6)  | 24        | Crank PW / Rev = ( Crank PW ) ( Crank PW Time - Out ) ( Constant )        |
| 86F8        | 105 (128) | 0.41 (0.5)  | 32        | < Table F64 > < Table F65>                                                |
| 86F9        | 105 (128) | 0.41 (0.5)  | 40        |                                                                           |
| 86FA        | 105 (126) | 0.41 (0.5)  | 48        |                                                                           |
| 66FB        | 105 (126) | 0.41 (0.5)  | 56        | Crank PW Time-Out - Crank PW Multiplier                                   |
| 86FC        | 105 (128) | 0.41 (0.5)  | 64        |                                                                           |
| 86FD        | 105 (128) | 0.41 (0.5)  | 72        | At <450 rpm and <95 deg. F - 1/3 Crank PW injected 3 times per revolution |
| 86FE        | 105 (128) | 0.41 (0.5)  | 80        |                                                                           |
| 86FF        | 105 (128) | 0.41 (0.5)  | 88        | 3 Reference pulses per revolution                                         |
| 8700        | 105 (128) | 0.41 (0.5)  | 96        |                                                                           |
| 8701        | 105 (128) | 0.41 (0.5)  | 104       |                                                                           |
| 8702        | 105 (128) | 0.41 (0.6)  | 112       |                                                                           |
| 8703        | 106 (128) | 0.41 (0.5)  | 120       |                                                                           |
| 6704        | 105 (128) | 0.41 (0.5)  | 126       |                                                                           |

Table F17 Idle Air Control (IAC) Command Speed vs. Coolant Temp Conversion Equation N = E / 12.5

| 16 BR       | Decimal  | Engineering | Coolant     |                                                                    |
|-------------|----------|-------------|-------------|--------------------------------------------------------------------|
| Henddeolmel | Computer | Unit        | Temperature |                                                                    |
| Address     | Unit     | (rpm)       | deg. C      | IAC Command Speed Calculation                                      |
| 8967        | 136      | 1700        | -40         |                                                                    |
| 8958        | 128      | 1600        | -28         | Command Idle RPM - Base Idle RPM + RPM Offset                      |
| 8959        | 112      | 1400        | -16         | < Table F17 >                                                      |
| 895A        | 104      | 1900        | -4          |                                                                    |
| 896B        | 104      | 1300        | 8           | Four Modes of Operation                                            |
| 696C        | 96       | 1200        | 20          |                                                                    |
| 896D        | 96       | 1200        | 32          | Start-up Delay - IAC motor initially moved to warm park' position  |
| 896E        | 80       | 1000        | 44          |                                                                    |
| 895F        | 72       | 900         | 56          | Open Loop - IAC motor retracts until actual rpm equals desired rpm |
| 8960        | 72 (70)  | 900 (875)   | 68          |                                                                    |
| 8981        | 72 (68)  | 900 (850)   | 80          | Closed Loop - IAC motor regulates to achieve desired rpm           |
| 8962        | 72 (68)  | 900 (850)   | 92          |                                                                    |
| 8963        | 72 (68)  | 900 (850)   | 104         | Throttle/Load Compensation - IAC motor compensates idle speed for  |
| 8964        | 72 (69)  | 900 (863)   | 116         | applied loads ( A/C, Pwr Steering, etc. )                          |
| 8965        | 72 (70)  | 900 (875)   | 128         |                                                                    |
| 8966        | 72       | 900         | 140         |                                                                    |
| 8967        | 72       | 900         | 152         |                                                                    |

Table F76 EGR Duty Cycle vs. LV6 - Load and RPM Conversion Equation N = E \* 256

|               |           |             | 1           | 1000 RPM               |             | I            | 1200 RPM               |             |                  | 1400 RPM      |                     |              | 1600 RPM      |                  |
|---------------|-----------|-------------|-------------|------------------------|-------------|--------------|------------------------|-------------|------------------|---------------|---------------------|--------------|---------------|------------------|
| 16 BK         | Decimal   | Engineering | 16 Bit      | Decimal                | Engineering | 16 Bit       | Decimal                | Engineering | 16 BH            | Decimal       | Engineering         | 16 BH        | Decimal       | Engineerin       |
| Heeddeolmel   | Computer  | Unit        | Hexidecimal | Computer               | Unit        | Hexideolmal  | Computer               | Unit        | Hexideoimal      | Computer      | Unit                | Hexidecimal  | Computer      | Unit             |
| Address       | Unit      | (DC%)       | Address     | Unit                   | (DC %)      | Address      | Unit                   | (DC %)      | Address          | Unit          | (DC %)              | Address      | Unit          | (DC %)           |
| 6308          | 0         | 0           | 8314        | 0                      | 0           | 831D         | 0                      | 0           | 8326             | 0             | 0                   | 832F         | 0             | 0                |
| 880C          | 0         | 0           | 8315        | 0                      | 0           | 831E         | 0                      | 0           | 8327             | 0             | 0                   | 8330         | 0             | 0                |
| 830D          | 0         | 0           | 8316        | 0                      | 0           | 831F         | 0                      | 0           | 8328             | 0             | 0                   | <b>63</b> 31 | 30 (26)       | 11.7 (10)        |
| 830E          | 0         | 0           | 8317        | 15 (13)                | 5.9 (5)     | 8320         | 43 (36)                | 16.6 (15)   | 8329             | 74 (64)       | 28.9 (25)           | 8332         | 103 (90)      | 40 2 (35)        |
| 830F          | 0         | 0           | 8318        | 30 (26)                | 11.7 (10)   | 8321         | 58 (51)                | 22.7 (20)   | 832A             | 103 (90)      | 40.2 (35)           | 8333         | 132 (115)     | 51.6 (45)        |
| 8910          | 0         | 0           | 8319        | 43 (38)                | 16.8 (15)   | 8322         | 74 (64)                | 28.9 (25)   | 8328             | 117 (102)     | 45.7 (40)           | 8334         | 147 (128)     | <b>57.4 (50)</b> |
| 8311          | 0         | 0           | 831A        | 58 (51)                | 22.7 (20)   | 8323         | 88 (77)                | 34.4 (\$0)  | 832C             | 132 (115)     | 51.6 (45)           | 8335         | 162 (141)     | 63.3 (55)        |
| 8312          | 0         | 0           | 831B        | 74 (64)                | 28.9 (25)   | 8324         | 103 (90)               | 40.2 (35)   | 832D             | 147 (126)     | 57.4 (50)           | 8336         | 168 (146)     | 65 6 (57)        |
| 8313          | 0         | 0           | 831C        | 88 (77)                | 34.4 (30)   | 8326         | 103 (90)               | 40.2 (35)   | 832E             | 162 (141)     | 63.8 (55)           | <b>83</b> 37 | 177 (154)     | 69.1 (60)        |
|               | 1800 RPM  |             |             | 2000 RPM               |             |              | 2200 RPM               |             |                  | 2400 RPM      |                     |              | 2600 RPM      |                  |
| 16 BR         | Decimal   | Engineering | 16 B#       | Decimal                | Engineering | 16 Bit       | Decimal                | Engineering | 16 Bit           | Decimal       | Engineering         | 16 Bit       | Decimal       | Engineering      |
| Hesddeoimel   | Computer  | Unit        | Hexideolmai | Computer               | Unit        | Hexidecimal  | Computer               | Unit        | Hexidecimal      | Computer      | Unit                | Hexideolmal  | Computer      | Unit             |
| Address       | Unit      | (DC%)       | Address     | Unit                   | (DC %)      | Address      | Unit                   | (00%)       | Address          | Unit          | (DC %)              | Address      | Unit          | (DC %)           |
| 9338          | 0         | 0           | 8341        | 0                      | 0           | 834A         | 0                      | 0           | 8353             | 0             | 0                   | 835C         | 0             | 0                |
| 9339          | 0         | 0           | 8342        | 0                      | 0           | 834B         | 0                      | 0           | 8354             | 0             | 0                   | <b>63</b> 6D | 0             | 0                |
| 833A          | 43 (38)   | 16.8 (15)   | 8343        | 58 (51)                | 22.7 (20)   | 834C         | 43 (38)                | 16.8 (15)   | 8366             | 30 (26)       | 11.7 (10)           | 835E         | 0             | 0                |
| 8558          | 103 (90)  | 40.2 (35)   | 8944        | 103 (90)               | 40.2 (35)   | 834D         | 103 (90)               | 40.2 (35)   | 8356             | 88 (77)       | 34.4 (30)           | <b>63</b> 5F | 74 (64)       | 28.9 (25)        |
| 839C          | 132 (115) | 51.6 (45)   | 8345        | 132 (115)              | 61.6 (45)   | 834E         | 147 (126)              | 51.6 (45)   | 6357             | 132 (115)     | 61.6 (45)           | 8360         | 117 (102)     | 45.7 (40)        |
| 8330          | 147 (126) | 57.4 (50)   | 8346        | 147 (12 <del>8</del> ) | 57.4 (50)   | 834F         | 162 (141)              | 57.4 (50)   | 8358             | 147 (128)     | 51.6 (45)           | 8361         | 147 (128)     | 57.4 (50)        |
| esse          | 177 (164) | 69.1 (60)   | 8347        | 177 (154)              | 69.1 (60)   | <b>8</b> 350 | 177 (1 <del>54</del> ) | 69.1 (60)   | 8359             | 177 (154)     | 89.1 (80)           | 8362         | 177 (154)     | 69.1 (60)        |
| 633F          | 185 (181) | 72.3 (63)   | 8348        | 190 (166)              | 74.2 (66)   | 8951         | 190 (166)              | 74.2 (66)   | 836A             | 190 (166)     | 74.2 (65)           | 8363         | 190 (166)     | 74.2 (66)        |
| <b>\$34</b> 0 | 190 (166) | 74.2 (66)   | 8349        | 205 (179)              | 80.1 (70)   | 8362         | 205 (179)              | 80.1 (70)   | 836B             | 190 (166)     | 74.2 (65)           | 8364         | 190 (166)     | 74.2 (65)        |
|               | 2800 RPM  |             |             | 3000 RPM               |             | <u> </u>     |                        | _           |                  |               |                     |              |               |                  |
| 16 Bk         |           | Engineering | 16 BH       | Decimal                | Engineering | {            | LV8 Load               | •           | EGIR Duty Cy     | xie Calculati | on                  |              |               |                  |
|               | Computer  |             | Hexidecimal | Computer               | Unit        | 1            | (for each              | _           |                  |               | A / FAR B .         |              |               |                  |
| Address       | Unit      | (DC %)      | Address     | Unit                   | (DC %)      | ļ.           | series )               | Ł           | •                |               |                     | Coolant Mult | ,             |                  |
| 8365          | 0         | 0           | 836E        | 0                      | 0           |              | 32                     |             | <                | Table F76 >   | < 1840              | le F77 >     |               |                  |
| 8366          | 0         | 0           | 636F        | 0                      | 0           | 1            | 48                     |             | EVRV DC          | E0.           | R Valve Press       | . 60         | R Valve Pos   |                  |
| 8367          | 0         | 0           | 8370        | 0                      | 0           | J            | 64                     |             |                  | EG            |                     |              | ed (normally  | . 1              |
| 8366          | 74 (64)   | 28.9 (25)   | 8371        | 74 (64)                | 28.9 (25)   | l            | 80                     | ^           | 0%<br>cDC < 100% |               | alm.<br>10 - 24 kPa |              | racioble lift | ' i              |
|               | 117 (102) | 45.7 (40)   |             | 117 (102)              | 45.7 (40)   | 1            | 96                     | 0 -         |                  |               |                     | •            | fully open    | ł                |
|               | 147 (128) | 57.4 (50)   |             | 147 (128)              | 57.4 (50)   | -            | 112                    |             | 100%             | rr            | ian. Vacuum         |              | iony openi    | j                |
|               | 177 (154) | 69.1 (60)   |             | 177 (154)              | 69.1 (60)   | į            | 128                    | e           | VRV - Electro    | anh Veri      | Damiletor \/=       | h/a          |               | 1                |
|               | 190 (166) | 74.2 (65)   |             | 190 (166)              | 74.2 (65)   |              | 144                    | E           | ALIA . EMBCE     | NEW VENUEN    | Lafiniern Au        |              |               | í                |
| <b>\$36</b> D | 190 (166) | 74.2 (65)   | 8376        | 190 (166)              | 74.2 (66)   |              | 160                    |             |                  |               |                     |              |               |                  |

Table F77 EGR Duty Cycle Multiplier vs. Coolant Temp Conversion Equation N = E \* 128

| 16 Bit<br>Hexideolmal | Decimal<br>Computer | Engineering<br>Unit | Coolant<br>Temperature | EGR Duty Cycle Calculation                                                            |
|-----------------------|---------------------|---------------------|------------------------|---------------------------------------------------------------------------------------|
| Address               | Unit                | ( gein )            | deg. C                 |                                                                                       |
| 8377                  | 0                   | 0                   | -40                    | EGR DC = (EGR Base DC) (EGR DC Coolant Mult)                                          |
| 8378                  | 35 (32)             | 0.27 (0.25)         | -28                    | <table f76=""> <table f77=""></table></table>                                         |
| 8379                  | 85 (60)             | 0.66 (0.625)        | -16                    |                                                                                       |
| 837A                  | 125 (120)           | 0.98 (0.94)         | -4                     | EGR DC = 0 when:                                                                      |
| 837B                  | 158 (152)           | 1.23 (1.19)         | 8                      | * park / nuetral                                                                      |
| 837C                  | 170 (168)           | 1.39 (1.31)         | 20                     | * manifold air temp. (MAT.) < -40 deg. C                                              |
|                       | , ,                 | , ,                 |                        | <ul> <li>throttle position (TPS) &lt; 2.7%, if not currently equal to zero</li> </ul> |
|                       |                     |                     |                        | * throttle position (TPS) < 4.3%, if ourrently equal to zero                          |
|                       |                     |                     | [                      | <ul> <li>power enrichment mode enabled - TPS &gt; 60% engine warmed</li> </ul>        |

# APPENDIX B Oil Sample Test Reports

EXAS TECH UNIVERSITY ATTN: DR. TIM MAXWELL

79409

P.O. BOX 41021

LUBBUCK TX

COMOCO MONITORED MAINTENANCE ade Chi Anabas Program TEST REPORT

'88 CORSICA Unit No:

Company.

TEXAS TECH UNIVERSITY

LUBBOCK TX Location

ENGINE Component: Make & Model CHEVY N/G

Atlanta, GA

(404) 454-8000

Oil Capacity N/G

041591 '88 CORSICA OH Type: Computer-Code-+> SAMPLE INFORMATION SPECIFICATIONS FOR THIS OIL ARE NOT AVAILABLE. TRACE WATER DETECTED. NO GLYCOL DETECTED. SUSPECT AB NO. 1-06/30/94 CONDENSATE, SUSPECT SILICON IS FROM ENGINE SEALANT (GASKET MATERIAL). SUSPECT ABNORMAL CYLINDER imple Drawn 07/11/94 AREA WEAR. CHECK FOR POWER LOSS, BLOW-BY, SMOKING, OIL CONSUMPTION, ETC. CHANGE OIL AND FILTER IF eport Date 19457 NOT DONE AT TIME OF SAMPLING. RESAMPLE AT NORMAL INTERVAL. [# VISCOSITY APPEARS LOWER THAN USUAL II/HR Unit: 3000 FOR MOTOR MILHR OIL NORMAL OIL.] ii Added: <del>509269705</del> <del>note viscosity. (Low): inspect fuel system for defects. Telecon. (Evaluator-mike costello) per dr.</del> AB NO. 2-09/20/94 TIM MAXWELL: UNIT HAS HAD PROBLEMS WITH FUEL PUMP. FUEL IS 100% Sample Drawn: 09/29/94 METHANOL. leport Date: 27000 II/HR Unit: 7000 MI/HR Oil: NORMAL il Added: AB NO. 3ample Drawn: eport Date: II/HR Unit: II/HR Oil: Oil Added: AB NO. 4ampie Drawn: Report Date: II/HR Unit: M/HR Oil: Sil Added: AB NO. 5ampie Drawn: eport Date: MI/HR Unit: II/HR Oil: ii Added: LAB NO. 6ample Drawn: eport Date: MI/HR Unit: MI/HR Oil: il Added:

|     |     | - 10000   |       |              | <del></del> | <u></u>  |          |         |   |                                                               |          |         |            |              |          |     |        |      |                                                  |                                                  |              |           |      |     |             |             |
|-----|-----|-----------|-------|--------------|-------------|----------|----------|---------|---|---------------------------------------------------------------|----------|---------|------------|--------------|----------|-----|--------|------|--------------------------------------------------|--------------------------------------------------|--------------|-----------|------|-----|-------------|-------------|
|     | 로_  |           |       | PHYSIC       | AL DA       | TA       |          |         | L | ELEMENTAL CONCENTRATIONS IN PARTS PER MILLION (PPM) BY WEIGHT |          |         |            |              |          |     |        |      |                                                  |                                                  |              |           |      |     |             |             |
|     | 1 0 | 00c<br>St | WATER | DET /        | SOLIDS      | 4000rmc4 | (-04F-0Z | TRAT-OX |   | W-1-002                                                       |          |         | ZCZWOWYLOZ | Z-OXWJ       | 202-202  | r-4 | COPPME | JEAO | w-1>ma                                           | 800-D#                                           | BOROZ        | ZAGZWG-DZ | A    | ١ 🚡 | CDOTA       | Z I ZC      |
| ter |     | 8.1       | 0.2   | VOI          |             | 1 % Wt   | Aven     | Wcm)    |   | 44                                                            | 293      | 21      | M          | <del>\</del> | - Me     | 177 | 60     | 35   | <del></del>                                      | <u>k1</u>                                        | <del>}</del> | 1118      | 700  | 0   | 8 <b>98</b> | 2181        |
|     |     | 9. 1      | 0.2   | -            | ۲.۱         |          | ۲        |         |   | •                                                             | 1        | ١٤,     | '          | 1'           | 12       | 111 | OU     | 30   | ۳                                                | 7                                                | ľ            | 1110      | 40   | U   | 070         | 2101        |
|     |     |           | 1     |              |             |          | 1        |         |   | В                                                             | В        |         |            | İ            | i        |     | 8      |      |                                                  | 1                                                | 1            |           | Ī    |     | 1 1         |             |
|     |     | 7.8       | ₹.05  | <del> </del> | <b>1.1</b>  | 1        | b        | 0       |   | 19                                                            | 80       | 5       | 13         | 3            | 8        | 0   | 4      | 20   | 0                                                | 58                                               | 36           | 855       | 1167 | 0   | 1252        | 1543        |
|     | 2   |           |       |              |             |          |          |         |   |                                                               |          |         |            |              |          | 1   |        |      |                                                  |                                                  |              |           |      |     |             |             |
|     | 3   |           |       |              |             |          |          |         |   |                                                               |          |         |            |              |          |     |        |      |                                                  |                                                  |              |           |      |     |             |             |
|     |     |           | -     |              | ļ           |          |          |         |   | <u> </u>                                                      | <u> </u> | <u></u> |            | <del> </del> | <u> </u> |     |        | L    | L.,                                              |                                                  | <u> </u>     | <u> </u>  |      |     |             |             |
|     |     |           |       | 1            |             |          | İ        |         |   |                                                               |          |         |            |              |          | 1   |        |      |                                                  |                                                  |              | İ         |      |     |             |             |
|     | _   |           | 1     |              |             | T        | -        |         |   |                                                               |          |         | !          | 1            |          |     |        | 1    | <del>                                     </del> | <del>                                     </del> | 1            | 1         |      |     | 1           |             |
|     | 5   |           |       |              |             |          | 1        |         |   | ł                                                             |          |         | İ          | İ            |          |     |        |      |                                                  |                                                  |              |           | İ    |     |             |             |
|     |     |           |       |              |             |          | 1        |         |   |                                                               |          |         |            | 1            | 1        |     | 1      |      |                                                  | 1-                                               | $\top$       |           |      |     |             | <del></del> |
|     |     |           |       |              |             |          |          |         |   | l                                                             |          |         |            |              |          | !   |        |      |                                                  |                                                  |              |           |      |     |             |             |

The validity of comments/recommendations is dependent on accurate, comments sample information, and representative oil sample.

MONITORED MAINTENANCE Lube Oil Anansis Program TEST REPORT

TEXAS TECH UNIVERSITY ATTN: DR. TIM MAXWELL P. O. BOX 41021

LUBBUCK , TX, 79409

Unit No

LIC#577-492

Company MECH ENGINEERING

Component ENGINE

Make & Model

CHEVY N/G

Atlanta, GA (404) 279-1370 Oil Capacity 4 QTS. Oil Type: LUBRIZOIL

|       | SAMPLE IN    | FORMATION         |              |                                                  |                                       |              | COMMENTS      |                    |                                                  |                                                  |    |
|-------|--------------|-------------------|--------------|--------------------------------------------------|---------------------------------------|--------------|---------------|--------------------|--------------------------------------------------|--------------------------------------------------|----|
| _ ,,  | 4B NO. 1-    | 00 92259 20       | DIRT (SIL    | .icon) proeael                                   | y assenbly                            | CONTAMINATI  | DX. # SUSPECT | F BREAK-IN NATER   | IAL. CHANGE DI                                   | IL AND FILTER                                    |    |
|       | imple Drawn  | K/C               | – IF NOT D   | CIME AT TIME (                                   | F SAMPLING                            | . (EVALUATUR | -RALPH PINE). |                    |                                                  |                                                  |    |
|       | eport Date:  | 09/24/93          |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | FHR Unit:    | 13,458            |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | I/HR Oil:    | N/G               |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | il Added:    | į                 |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | 4B NO. 2-    |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
| S     | ample Drawn: | ļ                 | -            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | eport Date:  |                   | į            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | II/HR Unit:  |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
| M     | II/HR Oif:   | į                 |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | il Added:    |                   | 1            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | AB NO. 3-    |                   |              |                                                  | · · · · · · · · · · · · · · · · · · · |              |               | ·                  |                                                  |                                                  | -  |
|       | ample Drawn: |                   | L            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | eport Date:  |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | II/HA Unit:  |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | IVHA Oil:    |                   | l            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | il Added:    |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
| _     | AB NO. 4-    |                   |              |                                                  |                                       |              |               |                    | <del></del>                                      | · <u> </u>                                       |    |
|       | ample Drawn: |                   | Ì            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | Report Date: |                   | Γ            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | M/HR Unit;   |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | II/HR Oil:   |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       |              |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | Added:       |                   | <del> </del> |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | AB NO. 5-    |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | ample Drawn: |                   | -            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | eport Date:  |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | /I/HA Unit:  |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | WHA Oil:     |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
| · ·   | il Added:    | ·                 |              |                                                  |                                       |              |               | <del></del>        |                                                  |                                                  |    |
| L     | AB NO. 6-    |                   | 1            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | ample Drawn: |                   | -            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | eport Date:  |                   | į.           |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
| 1     | VIVHR Unit:  |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | MI/HR Oil:   |                   | İ            |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | il Added:    |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       |              | PHYSICAL DA       |              |                                                  |                                       | ELEMENTAL C  | ONCENTRATION  | IS IN PARTS PER MI |                                                  | WEIGHT                                           | _  |
| В Z О | S T E R      | 5                 | 900T         | TRATION                                          | ;   M                                 | Z-CXWG XLOX  | A T O         | P E V E            | NAGZWON-JA                                       | CALCIUM PHORPHORUS                               | \  |
|       |              | VOI 1% VOI 1% VOI |              |                                                  |                                       | 1 1          |               | 47 40 5            | A                                                | 7                                                |    |
|       | 18.4 (       | .05 <.1           | 7            | 12                                               | 138 156                               | 9 1          | 3 7 69        | 47 40 0            | 85 1 215                                         | 2 137 0 1809 245                                 | 18 |
|       | ++-          | <del></del>       | +            | <del>                                     </del> | <del>-</del>                          |              | + + +         | -                  | <del>-                                    </del> | +                                                |    |
|       | 2            |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       | H            |                   | <del> </del> | <del></del>                                      |                                       |              | +             | <del></del>        |                                                  |                                                  | _  |
|       | <b>y</b> !   |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
| -     |              |                   | +            | <del> </del>                                     |                                       |              |               |                    |                                                  | <del>                                     </del> |    |
|       |              |                   |              |                                                  |                                       |              |               |                    | 1 1                                              |                                                  |    |
|       | <b></b>      |                   | <del> </del> | <del>                                     </del> |                                       |              | + + +         |                    |                                                  | 1                                                | _  |
|       | 5            |                   |              | 1 1                                              |                                       |              |               |                    |                                                  |                                                  |    |
|       |              |                   |              |                                                  |                                       |              |               |                    |                                                  | +                                                |    |
|       |              | 1 1               |              | <b> </b>                                         |                                       |              |               |                    |                                                  |                                                  |    |
|       |              |                   |              |                                                  |                                       |              |               |                    |                                                  |                                                  |    |
|       |              | Annomal mine      |              |                                                  |                                       |              | _             |                    |                                                  |                                                  |    |

TEXAS TECH UNIVERSITY ATTN: DR. TIM MAXWELL P.O. BOX 41021 LUBBUCK , TX, 79409 CONOCO MONTTORED MAINTENANCE Lute Oil Anahas Program TEST REPORT

Unit No: '88 CORSICA

Company: TEXAS TECH UNIVERSITY

Location: LUBBOCK TX
Component: ENGINE
Make & Model: CHEUY

Make & Model: CHEVY N/G
Oil Capacity:

Atlanta, GA

Oil Type: LUBRIZOL 05#796164

| SAMPLE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FORMATION                                                      | $\overline{}$ |        |                      |                         | <u>-</u>                   |          | 404    | • ) 4                                            | 74-          | 800      |                 | MENT     | I Type         | <u> </u> | JBK            | LZUL          | _ U          | 5#7°           | 7616     | 54    |           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|--------|----------------------|-------------------------|----------------------------|----------|--------|--------------------------------------------------|--------------|----------|-----------------|----------|----------------|----------|----------------|---------------|--------------|----------------|----------|-------|-----------|------|
| AB NO 1- Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Drawn Imple Dra | E07070247<br>06/30/94<br>07/11/94<br>19,457<br>3,000<br>HORMAL | i  -          | CHECK  | TARK<br>For<br>UF 30 | E. SL<br>Pulie<br>Ampli | ispect<br>er los<br>ing. i | HIS O    | CON IS | FREDIN<br>Smrt                                   | SEAL!        | ANT IN   | nteria<br>Insum | AT (CA   | ISKETS<br>ETC. | CHAM     | SPECT<br>SE 01 | EHBA<br>CHA J | rnal<br>Filt | CYLIN<br>ER IF | DER A    | REA W | <b>AT</b> |      |
| Sample Drawn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |               | -      |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| eport Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | ı             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| I'HR Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                | 1             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| MLHR Oit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| ii Added:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                | 1             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| AB NO. 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| ample Drawn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | -             | -      |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| eport Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| I/HR Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| di/HR Oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| Oil Added:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| AB NO. 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| ample Drawn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | }             | -      |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| Report Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | 1             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| I/HR Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                | Į             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| I/HP Oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| Oil Added:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| AB NO. 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                | ł             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| ample Drawn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | ţ             | -      |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| eport Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| MI/HR Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | 1             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| MHR Oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | 1             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| Added:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           | _    |
| LAB NO. 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| eport Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               | _      |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| MI/HR Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | ļ             | l      |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| MI/HR Oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
| il Added:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHYSIC                                                         | AL DA         |        |                      |                         |                            |          |        | ELE                                              | MENT         | AL CO    | CENT            | RATIO    | NS IN          | PARTS    | PER            | MILLIO        | Y (PP        | A) BY \        | VEIGH    | Ť     |           |      |
| V ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 5 / 6                                                        |               | F JE J | 2 Z                  |                         |                            | S        | 8      | OTHO                                             | ξ            | 15       |                 | 1 /      | 9 (            | E \      | s              | 8             | OR O         | Ĝ \            |          | BAR   | PTOS      | 2100 |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                              | 8             |        | <del>^</del> \'      | 1                       |                            | ¿        | n /    | M \                                              | 퉡 /          | KEL      | M               | - 1      | PER            | ١ "      | EA             | W \           | W.           | Ema            | 1 1      | ij∖   | 7         | ĺ    |
| 8 100 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                                                            | . \           | P \    |                      | άl                      |                            | ő,       |        | ۱ تا                                             | ZCZMOW.      | ١ ١      | 7               | 1        | "              | /        | "              | l             | 1            | <u>u</u> \     | M/       | M     | NC TOTON  |      |
| 12 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vol \% Vol \                                                   | 4             | % Wt   | A/cm                 | A/cm                    |                            | +-       | -      | M                                                |              |          | M               | <u> </u> |                |          |                |               |              | }              | }        | }     | T         | +    |
| 8.1 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                              | <b>(.1</b>    |        |                      |                         |                            | 44       |        | 21                                               | 0            | 6        | 8               | 11       | 60             | 35       | 0              | 46            | 8            | 1118           | 39       | 8     | 898       | 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |        |                      |                         |                            | ╁╬┈      | B      | <del>                                     </del> | <del> </del> |          |                 |          | B              |          |                |               |              | <u> </u>       |          | -     |           | +    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |        |                      |                         |                            | 1        |        |                                                  |              | İ        |                 |          |                |          |                |               |              |                |          |       |           |      |
| 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |               |        |                      |                         |                            | $\top$   |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           | T    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | -             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          | ļ              |               |              |                |          | 1     |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | !             |        |                      |                         |                            | 7        |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          |       |           | Ť    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |        |                      |                         |                            | <u> </u> |        |                                                  |              |          |                 |          |                |          |                |               |              |                |          | ļ     |           |      |
| -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i                                                              | i             |        |                      |                         |                            |          |        |                                                  |              |          |                 |          |                |          |                |               |              |                | ŀ        | i     |           | T    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |        |                      |                         |                            |          |        | <u> </u>                                         |              | <u> </u> |                 |          | <u> </u>       |          |                |               |              | <u> </u>       | <u> </u> |       |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |        | F                    |                         |                            | ı        | 1      | 1                                                | 1            | i        |                 | 1        | 1              | 1        | 1              |               | ł            | i              | i        | i     | Į.        | - 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |        | i                    |                         |                            | 1        | !      | }                                                | 1            | ł        | l               | 1        | 1              |          | 1              | 1             | l            | 1              | 1        |       | 1         | ı    |

MONITORED MAINTENANCE EXAS TECH UNIVERSITY Like Chi Anahas Program ATTN: DR. TIM MAXWELL TEST REPORT P.O. BOX 41021 Atlanta, GA UBBUCK TX 79409 (404) 454-8000 Computer-Code--> SAMPLE INFORMATION72 48 NO 1-11/18/94 imple Drawn 12/02/94 port Date: 31000 HR Unit: 3500 M HR Oit NORMAL Added: 48 NO. 2-Sample Drawn: eport Date: ⊬HR Unit: MUHB Oit: :I Added: 4B NO. 3ample Drawn: eport Date: L'HR Unit

123583 Unit No: TEXAS TECH UNIVERSIT Company

Location

ENGINE Component: N/G N/G

Make & Model:

N/G Oil Capacity.

041591 123583 Oil Type: INSUFFICIENT INFO GIVEN TO PROVIDE ACCURATE EVALUATIONED DATA, SUSPECT ABNORMAL CYLINDER AREA WEAR. SUSPECT RING WEAR. VALVE AREA WEAR INDICATED (NICKEL). CHECK FOR POWER LOSS, BLOW-BY, SMOKING, OIL CONSUMPTION, ETC. SUSPECT ABNORMAL MAIN/CONN. ROD BEARING WEAR. WEAR NOT MAJOR. BUT SHOULD BE NOTED. CHECK FOR KNOCKING AND/OR LOSS OF OIL PRESSURE. RECOMMEND CLOSE MONITORING. RESAMPLE AT ONE HALF NORMAL INTERVAL. (EVALUATOR - G.D.) WHR Oil: Oil Added: AB NO. 4ample Drawn: Report Date: dt/HR Unit I/HR Oil: Sil Added: AB NO. 5ample Drawn: eport Date: MI/HR Unit: MAR OIL ii Added: LAB NO. 6ample Drawn: eport Date: MI/HR Unit: MI/HR Oil: il Added: PHYSICAL DATA ELEMENTAL CONCENTRATIONS IN PARTS PER MILLION (PPM) BY WEIGHT N-ZO SOO S LOKE. S N. 101 å PERE 100C ġ 222 ã ∕cSt TAN A/cm/A/cm % Wt 1832 2553 С В В 8 8 5

Abnormal values are coded to indicate degree of seventy.

C = High value. Normally requires D = Severe abnormality indicated B = Slightly above normal.

The validity of comments/recommendations is dependent on accurate complete sample information and representative oil sample.

TEXAS TECH UNIVERSITY ATTN: DR TIM MAXWELL P. O. BOX 41021 LUBBUCK / TX/ 79409



Unit No.

Oil Capacity.

Company

TEXAS TECH UNIVERSITY Location:

Component UBBOCK TX Make & Model ENGINE

CHEVY N/G

Atlanta, GA

5 GTS Oil Type:

(404) 454-8000 LUBRIZOL SAMPLE INFORMATION COMMENTS AB NO 1-DIL NEG. , TRADEMANE, AND/OR SAE/ISD GRADE OF DIL NOT GIVEN. HIGH LEVEL OF DIRF DETECTED. GENERALIZED 01/0019921 ample Drawn 09/24/93 (MON-SPECIFIC) WEAR INDICATED, CHANGE OIL AND FILTER IF NOT DONE AT TIME OF SAMPLING. eport Date (EVALUATOR-RALPH PINE). 10/06/93 JUHA Unit: 17,177 MHA ON 3,727 il Added: AB NO. 2-Sample Drawn: eport Date: II/HR Unit: MI/HR OIL d Added 48 NO. 3ample Drawn: eport Date: II/HR Unit: MI/HR Oil: Qil Added: AB NO. 4ample Drawn: Report Date: 11/HA Unit: IVHA Oil: Oil Added: AB NO. 5ample Drawn: Report Date: MI/HR Unit: 11/HR Oil: Jil Added: LAB NO. 6ample Drawn: leport Date: MI/HR Unit: 4I/HR Oil: )il Added: PHYSICAL DATA ELEMENTAL CONCENTRATIONS IN PARTS PER MILLION (PPM) BY WEIGHT 001 アンドロ 701 100 d CST A/cm\A/crr 8.5 (.03 <.1 8 12 207 3 9 30 47 27 0 47 0 2060 57 0 1072 2157 31

## **APPENDIX C**

## **Emissions Test Results**from Southwest Research Institute

## **FAX COVER LETTER**

| DATE: 02/22/93                                                                                              |                                        |                           |               |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|---------------|
| PLEASE DELIVER TO:                                                                                          | Mr. Jessa Jones                        |                           |               |
| FAX NUMBER:                                                                                                 | 806-742-3540                           |                           |               |
| FROM: Kevin Whitne                                                                                          | ev. Phone: 210-522-5869                | Swri Charge No08#         | _             |
| Southwest Research Institute Department of Emissions In Automotive Products and In Fax Number (512) 522-395 | Research<br>Emissions Research Divisio | n                         |               |
| WE ARE TRANSMITTING                                                                                         | PAGES (ii                              | ncluding this cover page) |               |
| If transmission is not complete                                                                             | please call (512) 522-2609             |                           |               |
| MESSAGE:                                                                                                    |                                        |                           | <del></del> - |

Here a new copies of the data, the are no changes but they're a bit easier to read. The reason the values for NMOG and THC are similar is because of how each is calculated. The calculations are as follows:

NMOG = NMHC + CARBONYL + ALCOHOL

THC = NMOG + 0.0043\*CH4

Dear Jesse:

As you can see, for CARB calculation purposes THC is a calculated number rather than from a FID analyser. This is how the confusion arose. Please note that this data does not have a RAF applied to it. It is 0.41 for M85, but I'm not sure what it is for M100. If you have any other questions, feel free to call me at 210-522-5869.

Sincerely,

Kevin A. Whitney ---

Engineer

Department of Emissions Research

COMPUTER PROGRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| ENGINE                     | 88 CHEVY<br>2.8 L (17        | CORSICA<br>1 CID)-7-6  | DATE 1<br>DYNO 2          | -TT-01<br>/19/93 RUN<br>BAG CART 2<br>ROAD LOAD 7.70 HP<br>IGRT 3500 LBS (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P<br>H               | ETHANOL EN-1399-<br>UEL DENSITY 6.67<br>1.126 C .375 O | 20 LB/GAL                                                                |
|----------------------------|------------------------------|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------|--------------------------------------------------------------------------|
| RELATIVE HUNTDI            | TTV 38.6 PC                  | <b>T</b> .             |                           | erature 72.0°F (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.2°C) N            | OX HUMIDITY C.P.                                       | .880                                                                     |
| RAG KUNERER                | 5070                         |                        | 1                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 3                                                      |                                                                          |
| BAG MUMBER<br>BAG DESCRIPT | ION                          |                        | COLD TRANSIE              | MT STABILI<br>(505-1372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZED BOT              | TRANSIENT                                              |                                                                          |
| ROW TIME SECO              | ONDS                         |                        | 505.2                     | 867.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                    | 605.4                                                  |                                                                          |
| DAY AURT (CODD)            | PARTAN PLAN                  | NOD SAME/RAC           | ¥ 977 / 92G               | 980/.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RQ .97               | 12/_989                                                |                                                                          |
| MEASURED DIS               | TANCE MILES                  | S (KOE)                | 3.58 ( 5.76               | 3.83 ( 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .16) 3.57            | 7 ( 5.74)                                              |                                                                          |
| BLOWER FLOW                | RATE SCPN (                  | (SCMM)                 | 557.2 (15.7               | 8) 556.9 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.77) 556.           | 5 (15.76)                                              |                                                                          |
| GAS HETER FL               | OW RATE SCI                  | TH (SCHIN)             | .27 ( .01                 | .27 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .01) .27             | 7 ( .01)                                               |                                                                          |
|                            |                              |                        |                           | 3.83 ( 6<br>8) 556.9 (1<br>) .27 (<br>9) 8051. ( 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                        |                                                                          |
| RC SAMPLE N                | ETER/RANGE                   | /PPH (BAG)             | 37.8/ 2/ 37               | 7.78 11.9/ 2/<br>7.60 9.9/ 2/<br>7.60 17.1/ 12/<br>7.60 17.1/ 12/<br>7.60 17.1/ 12/<br>7.60 17.1/ 12/<br>7.60 17.1/ 14/<br>7.60 1.89 11.5           | 2/ 11.49                                               |                                                                          |
| HC BCKGRD N                | ETER/RANGE,                  | /PPH                   | 7.6/ 2/ 7                 | .60 9.9/ 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.89 9.7             | / Z/ 9.69                                              |                                                                          |
| CO SAMPLE N                | ETER/RANGE                   | /PPN                   | 33.6/ 12/ 32              | 2.60 17.1/ 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.47 10.6,          | / 12/ 10.16                                            |                                                                          |
| CO BCKGRD N                | ETER/RANGE,                  | /PPM                   | 1.1/ 12/ 3                | .04 1.4/ 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.33 1.3,            | 121 1.23                                               |                                                                          |
| COZ SARPLE H               | EKTEK/RANGE.                 | /PCT                   | 77.8/ 14/ .6              | 0203 6/-4/ 14/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .4640 /4.1,          | / 14/ .5601                                            |                                                                          |
| COS DONGED II              | ETEK/BARGO,<br>Durum (daram) | /FC]<br>/1994 /536\ /f | 14.U/ 14/ )U<br>3)        | 15.13 14/<br>140 27/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .U400 13.0;          | / 14/ .04/0<br>/ 1/ £ 77                               |                                                                          |
| NOT DONOUGH                | ieter/Range<br>Hondo (dince  | /PPE (DAG) (1          | )) 45.6/ 1/ 1/<br>1.5/ 1/ | 1.43 Z.// 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .00 Zi.U             | / 1/ 0.77<br>! 1/ 00                                   |                                                                          |
| MAY DOUGHT I               | ETEK/KANGE<br>EDW (1 130)    | /PPR                   | 1.0/ 1/                   | .30 1.9/ 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .40 1.1 <sub>1</sub> | / 1/ .20<br>4 30                                       |                                                                          |
| CH4 BOKGRD P               | PM                           |                        | 2.54                      | 2.7/ 1;<br>.38 1.9/ 1;<br>3.<br>2.<br>24.<br>24.<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                   | 2.51                                                   |                                                                          |
| DILUTION FAC               | CTOR                         |                        | 18.42                     | 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .78                  | 20.57                                                  |                                                                          |
| HC CONCERT                 | TRATION PPN                  |                        | 30.59                     | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                   | 2.27                                                   |                                                                          |
| CO CONCENT                 | eration ppn                  | Í                      | 30.61                     | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . <b>7</b> 7         | 8.70                                                   |                                                                          |
| CO2 CONCENT                | TRATION PCT                  |                        | .5751                     | .41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · <b>93</b>          | .5154                                                  |                                                                          |
| NOX CONCENT                | PRATION PPN                  | Į.                     | 11.07                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 22                 | 6.51                                                   |                                                                          |
| CH4 CONCENT                | TRATION PPH                  |                        | 1.88                      | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .13                  | 2.00                                                   |                                                                          |
| MARC CONCENS               | FRATION PPM                  | ł.                     | .13                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .07                  | .02                                                    |                                                                          |
|                            | GRAMS                        |                        | 6.521                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 365                  | .189                                                   |                                                                          |
|                            | GRANS                        |                        | 4.737                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 920                  | 1.345                                                  |                                                                          |
|                            | GRAMS                        |                        | 1399.64                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1253.19                                                |                                                                          |
|                            | GRAMS<br>GRAMS               |                        | 2.478<br>.167             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>385</b><br>172    | 1.454<br>.178                                          |                                                                          |
|                            | GRANS (FII                   | 3)                     | .010                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141                  | .001                                                   |                                                                          |
| FUEL KASS                  |                              | <b>,</b>               | 1.031                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 279                  | 03.4                                                   |                                                                          |
| FUEL ECONON                |                              | OOKIK)                 | 10.43 ( 22                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | .71 ( 20.08)                                           | A &                                                                      |
|                            | •                            | ,                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                        | MIN FR                                                                   |
| 3-BAG COMPOSI              |                              |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                        | 818 878 BJ                                                               |
|                            | THC                          | G/NI                   | .40                       | CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G/MI .04             | 17                                                     | V -                                                                      |
|                            | 00                           | G/MI                   | .91                       | NNBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G/MI .02             | 20                                                     | ANNATE                                                                   |
|                            | MOX                          | G/NI                   | .27                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YL G/MI .04          | <del>9</del>                                           | GUENERO                                                                  |
|                            | pre-en-                      | DANIAN                 | /# /4.6.0PM/              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OL G/NI .30          | <b>b</b> ?                                             |                                                                          |
|                            | PUEL                         | ECOMONY MPG            | (L/100KM) 9.91            | (23.73) NHOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G/HE .3              | 96                                                     | CARRENT MIR FA AT BIB STS GT TO BIB STS GT TO STORE GUERRO  3. 12 CR O3/ |
|                            |                              |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                        | ۴ *                                                                      |

COMPUTER PROGRAM LEFT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

|            | DEL       | 88 CHEVY CO                  | rsica<br>CID)-V-6 |                      | RUM           |       | HETHANOL ER-1399-I<br>FUEL DENSITY 6.620<br>H .126 C .375 O . | LB/GAL |
|------------|-----------|------------------------------|-------------------|----------------------|---------------|-------|---------------------------------------------------------------|--------|
| TRANSMISSI | <b>∆¥</b> | SH (T)                       | 015, . 0          | ACTUAL ROAD LOA      |               |       | <u> </u>                                                      |        |
| ODONETER   |           |                              |                   | TEST WEIGHT 35       |               |       |                                                               |        |
|            |           | 0 IN BG (744<br>TY 38.6 PCT. |                   | DRY BULB TEMPERATURE | 72.0°F ( 22.2 | 2°C)  | NOX BUNIDITY C.F.                                             | .880   |
| BAG MUNB   | ER        |                              | 1                 | 2                    | 3             |       |                                                               |        |
| BAG DRSC   | RIPTI     | OM CO1/D                     | TRANSTERM         |                      | BOT TRANSI    | KNY   | BACKGROUND                                                    |        |
|            |           | ( 0                          | )-505 SEC. }      | (505-1372 SEC.)      | ( 0- 505 :    | SEC.) |                                                               |        |
| FORKALDE   | MYDE      | , -                          | ,                 | (,                   | ( 0 000 0     | ,     |                                                               |        |
| PPK        |           |                              | .252              | .008                 | .011          |       | .014                                                          | •      |
| NASS       |           |                              | 38.71             | .00                  | .00           |       | 1441                                                          |        |
| ACETALDE   |           |                              | 30.71             | .00                  | .00           |       |                                                               |        |
| PPH        |           |                              | .035              | .015                 | .005          |       | .002                                                          |        |
| KASS       |           |                              | 7.83              | 5.54                 | .65           |       | 1002                                                          |        |
| ACROLEIN   |           |                              | 7.43              | 5.54                 | .00           |       |                                                               |        |
|            | 1         |                              | A15               | 000                  | 000           |       | 600                                                           |        |
| PPN        |           |                              | .015              | .000                 | .000          |       | .000                                                          |        |
| MASS       | MG        |                              | 4.39              | .00                  | .00           |       |                                                               |        |
| ACETONE    |           |                              |                   |                      |               |       |                                                               |        |
| PPM        |           |                              | .048              | .059                 | .036          |       | .013                                                          |        |
| MASS       |           |                              | 11.22             | 25.06                | 7. <b>57</b>  |       |                                                               |        |
| PROPIONA   | /TDBH/    | DE                           |                   |                      |               |       |                                                               |        |
| PPN        |           |                              | .010              | .000                 | .000          |       | .000                                                          |        |
| Mass       | MG        |                              | 3.13              | .00                  | . <b>0</b> 0  |       |                                                               |        |
| CROTONAL   | DEHAI     | )E                           |                   |                      |               |       |                                                               |        |
| PPM        |           |                              | .000              | .000                 | .000          |       | .000                                                          |        |
| Mass       | NG        |                              | -00               | .00                  | .00           |       |                                                               |        |
| ISOBUTY    | R+MEK     |                              |                   |                      |               |       |                                                               |        |
| PPM        |           |                              | .000              | .001                 | .000          |       | .001                                                          |        |
| HASS       | MG        |                              | .00               | .04                  | .00           |       |                                                               |        |
| RENZALD    |           |                              |                   |                      |               |       |                                                               |        |
| PPM        |           |                              | .000              | .000                 | .000          |       | .000                                                          |        |
| MASS       | NG        |                              | .00               | .00                  | .00           |       |                                                               |        |
| HEXANALI   |           | R                            |                   | •••                  |               |       |                                                               |        |
| PPK        | ~ ~ ~ ~ . | -                            | .000              | .000                 | .000          |       | .000                                                          |        |
| MASS       | NG        |                              | .00               | .00                  | .00           |       | 1000                                                          |        |
| METHANO    |           |                              | 100               | •00                  | .00           |       |                                                               |        |
| PPE        | _         |                              | 36.444            | .238                 | .173          |       | .171                                                          |        |
| MASS       | ¥C.       | E                            | 279.27            | 21.59                | 1.45          |       | •111                                                          |        |
| ethanol    |           | 9                            | 213.21            | 21.33                | 1.43          |       |                                                               |        |
| PPH        |           |                              | .000              | .000                 | .000          |       | .000                                                          |        |
| WASS       | W/I       |                              | .00               | .00                  | .000          |       | .000                                                          |        |
| HADD       | πu        |                              | _QU               | . IAI                | .00           |       |                                                               |        |
| 3-BAG COM  | POSIT     | e resolts                    |                   |                      |               |       |                                                               |        |
|            |           | PORMALDEHYDE                 | HG/HI             | 2.247                | CROTONALD.    | NG/HI | .000                                                          |        |
|            |           | ACETALDERYDE                 | •                 | 1.253                | ISOBUTYR+MEK  |       | .005                                                          |        |
|            |           | ACROLEIN                     | MG/MI             | .255                 | BENZALDERYDE  | •     | .000                                                          |        |
|            |           | ACETONE                      | MG/MI             | 4.622                | HEXANALDERADE | •     | .000                                                          |        |
|            |           | PROPIONALD.                  | •                 | .182                 | NETHANOL      | MG/MI | 367.478                                                       |        |
|            |           | · AUL TURALEU                |                   | .102                 | ETHANOL       | NG/NI | .000                                                          |        |
|            |           |                              |                   |                      | UI HUDVL      | witni | .000                                                          |        |

COMPUTER PROGRAM LIFT 1.0-R 3-BAG CARB FTP VEHICLE ENISSION RESULTS PROJECT NO. 08-4527-008

| VERICLE NUMBER 577 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION 5N ODONETER 9258 MILES ( 14896 K                                                                                                                                               | TEST CC-TT-02<br>DATE 1/20/93 | RUN                   | HETBAROL EN-1399-F<br>FUEL DENSITY 6.620 LB/GAL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------------------------------------|
| ENGINE 2.8 L (171 CID)-V-6                                                                                                                                                                                                                                               | DYNO 2 BA                     | G CART 2              | H .126 C .375 O .499 X .000                     |
| TRANSMISSION 5N                                                                                                                                                                                                                                                          | ACTUAL ROAD LOA               | D 7.70 HP ( 5.74 KW)  | )                                               |
| ODOMETER 9258 HILES ( 14896 K                                                                                                                                                                                                                                            | n) test weight 35             | 00 LBS ( 1587 KG)     |                                                 |
| BAROMETER 29.32 IN HG (744.7 NN HG) RELATIVE HUNIDITY 44.2 PCT. BAG NUMBER BAG DESCRIPTION  RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCPM (SCMM) GAS METER FLOW RATE SCPM (SCMM) TOTAL FLOW SCF (SCM)         | DRY BULB TEMPERATURE          | 70.0 F ( 21.1 C)      | NOX MUNIDITY C.F892                             |
| BAG KUNBER                                                                                                                                                                                                                                                               | 1                             | 2                     | 3                                               |
| BAG DESCRIPTION                                                                                                                                                                                                                                                          | COLD TRANSIENT                | STABILIZED            | HOT TRANSIENT                                   |
|                                                                                                                                                                                                                                                                          | ( 0-505 SEC.)                 | (505-1372 SEC.)       | ( 0- 505 SEC.)                                  |
| RON TIME SECONDS                                                                                                                                                                                                                                                         | 505.3                         | 867.7                 | 507.1                                           |
| DRY/WET CORRECTION FACTOR, SAMP/BACK                                                                                                                                                                                                                                     | .976/.989                     | .9 <b>79/.989</b>     | .977/.989                                       |
| NRASURED DISTANCE NILES (KM)                                                                                                                                                                                                                                             | 3.57 ( 5.74)                  | 3.82 ( 6.15)          | 3.57 ( 5.74)                                    |
| BLOWER FLOW RATE SCPN (SCHN)                                                                                                                                                                                                                                             | 557.5 (15.79)                 | <b>55</b> ?.1 (15.78) | 556.6 (15.76)                                   |
| GAS HETER FLOW RATE SCYN (SCHII)                                                                                                                                                                                                                                         | .27 ( .01)                    | .27 ( .01)            | .27 ( .01)                                      |
| TOTAL FLOW SCF (SCM)                                                                                                                                                                                                                                                     | 4697. (133.0)                 | 8061. ( 228.3)        | 4706. (133.3)                                   |
| BC SAMPLE HETER/RANGE/PPN (BAG)                                                                                                                                                                                                                                          | 46.0/ 2/ 45.97                | 12.1/ 2/ 12.09        | 12.1/ 2/ 12.09                                  |
| HC BCKGRD NETER/RANGE/PPN                                                                                                                                                                                                                                                | 9.4/ 2/ 9.39                  | 11.0/ 2/ 10.99        | 10.7/ 2/ 10.69                                  |
| CO SAMPLE METER/RANGE/PPM                                                                                                                                                                                                                                                | 58.1/ 12/ 56.81               | 13.6/ 12/ 13.06       | 11.8/ 12/ 11.32                                 |
| CO BCKGRD HETER/RANGE/PPN                                                                                                                                                                                                                                                | 2.9/ 12/ 2.76                 | 2.3/ 12/ 2.19         | 2.7/ <b>12</b> / <b>2.5</b> 7                   |
| CO2 SAMPLE METER/RANGE/PCT                                                                                                                                                                                                                                               | 77.5/ 14/ .6152               | 67.7/ 14/ .4680       | 74.7/ 14/ .5695                                 |
| CO2 BCKGRD NETER/RANGE/PCT                                                                                                                                                                                                                                               | 14.4/ 14/ .0494               | 14.5/ 14/ .0498       | 14.9/ 14/ .0515                                 |
| NOX SAMPLE HETER/RANGE/PPN (BAG) (D                                                                                                                                                                                                                                      | 39.9/ 1/ 9.97                 | 1.5/ 1/ .38           | 7.8/ 1/ 1.96                                    |
| NOX BCKGRD METER/RANGE/PPN                                                                                                                                                                                                                                               | 2.3/ 1/ .58                   | 3.4/ 1/ .78           | 1.0/ 1/ .25                                     |
| CH4 SAMPLE PPH (1.120)                                                                                                                                                                                                                                                   | 4.10                          | 3.90                  | 4.77                                            |
| BC SAMPLE METER/RANGE/PPM (BAG) BC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT MOX SAMPLE METER/RANGE/PPM (BAG) (D MOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.120) CH4 BCKGRD PPM | 3.30                          | 3.18                  | 3.12                                            |
| DILUTION FACTOR  HC CONCENTRATION PPN  CO CONCENTRATION PPN  CO2 CONCENTRATION PCT  NOX CONCENTRATION PPN  CH4 CONCENTRATION PPN  NNHC CONCENTRATION PPN                                                                                                                 | 18.47                         | 24.58                 | 20.23                                           |
| HC CONCENTRATION PPN                                                                                                                                                                                                                                                     | 37.09                         | 1.55                  | 1.93                                            |
| CO CONCENTRATION PPH                                                                                                                                                                                                                                                     | 52.38                         | 10.63                 | 8.56                                            |
| 002 CONCENTRATION PCT                                                                                                                                                                                                                                                    | <b>.5</b> 685                 | .4202                 | .5206                                           |
| NOX CONCENTRATION PPH                                                                                                                                                                                                                                                    | 9.42                          | 37                    | 1.72                                            |
| CH4 CONCENTRATION PPH                                                                                                                                                                                                                                                    | .98                           | . 85                  | 1.80                                            |
| NNHC CONCENTRATION PPH                                                                                                                                                                                                                                                   | .00                           | .59                   | 04                                              |
| TEC HASS GRAMS                                                                                                                                                                                                                                                           | 8.136                         | .210                  | .163                                            |
| CO KASS GRANS                                                                                                                                                                                                                                                            | 8.112                         | 2.824                 | 1.328                                           |
| CO2 HASS GRANS                                                                                                                                                                                                                                                           | 1384.57                       | 1756.07               | 1270.27                                         |
| NOX MASS GRAMS                                                                                                                                                                                                                                                           | 2.139                         | .000                  | .391                                            |
| CH4 MASS GRAMS                                                                                                                                                                                                                                                           | .087                          | .130                  | .160                                            |
| NNEC MASS GRAMS (FID)                                                                                                                                                                                                                                                    | .000                          | .078                  | .000                                            |
| FUEL HASS KC                                                                                                                                                                                                                                                             | 1.025                         | 1.282                 | .926                                            |
| FUEL BOONORY MPG (L/100KM)                                                                                                                                                                                                                                               | 10.45 ( 22.51)                | 3.96 ( 26.26)         | 11.56 ( 20.35)                                  |
| 3-BAG COMPOSITE RESULTS                                                                                                                                                                                                                                                  |                               |                       |                                                 |
| , TBC G/NI                                                                                                                                                                                                                                                               | .48                           | CB4 G/MI              | .035                                            |
| CO G/HI                                                                                                                                                                                                                                                                  | .96                           | NNEC G/NI             | .011                                            |
| NOX G/MI                                                                                                                                                                                                                                                                 | .15                           | CARBONYL G/NI         | .005                                            |
| •                                                                                                                                                                                                                                                                        |                               | ALCOHOL G/NI          | .464                                            |
| PURL ECONONY MPG                                                                                                                                                                                                                                                         | (L/100KM) 9.87 (23.84)        | NNOG G/NI             | .479                                            |

COMPUTER PROGRAM LOT 1.0-R

3-BAG CARB PTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

|            | DEL   | 88 CHEVY CO                  | RSICA         |                            | RUN           |       | METHANOL EN-1399-F<br>FUEL DENSITY 6.620<br>H .126 C .375 O .4 | LB/GAL |
|------------|-------|------------------------------|---------------|----------------------------|---------------|-------|----------------------------------------------------------------|--------|
| TRAKSXISSI |       |                              |               | ACTUAL ROAD LOA            |               |       |                                                                |        |
| ODOMETER   |       | 9258 NILE                    | S ( 14896 KM) | TEST WEIGHT 35             | 00 LBS ( 1587 | KG)   |                                                                |        |
|            |       | 2 IN HG (744<br>TY 44.2 PCT. |               | DRY BULB TEMPERATURE       | 70.6°F ( 21.  | ı'c)  | NOX HUNIDITY C.F                                               | 892    |
| BAG MUNE   |       |                              |               | 2                          | 3             |       |                                                                |        |
| BAG DESC   | PIPI  |                              |               | STABILIZED (505-1372 SBC.) |               |       | BACKGROUND                                                     |        |
| FORMALDI   | HYDE  | •                            | •             | •                          | ,             | ,     |                                                                |        |
| PPN        |       |                              | .363          | .015                       | .013          |       | .017                                                           |        |
| HASS       | KG    |                              | 56.32         | .00                        | .00           |       |                                                                |        |
| ACETALDI   |       |                              |               |                            |               |       |                                                                |        |
| PPN        |       |                              | .012          | .003                       | .001          |       | .002                                                           |        |
| WASS       | ĦĠ    |                              | 2.36          | .43                        | .00           |       |                                                                |        |
| ACROLEI    |       |                              |               |                            |               |       |                                                                |        |
| PPN        |       |                              | .000          | .000                       | .000          |       | .000                                                           |        |
| mass       | MG    |                              | .00           | .00                        | .00           |       |                                                                |        |
| ACETONE    |       |                              |               |                            |               |       |                                                                |        |
| PPM        |       |                              | .043          | .008                       | .015          |       | .005                                                           |        |
| Wass       | HG    |                              | 12.14         | 1.85                       | 3.09          |       |                                                                |        |
| PROPION    | ALDEH | YDE                          |               |                            |               |       |                                                                |        |
| PPM        |       |                              | .000          | .000                       | .000          |       | .000                                                           |        |
| MASS       | NG    |                              | .00           | .00                        | .00           |       |                                                                |        |
| CROTONA    | LDEHY | DE                           |               |                            |               |       |                                                                |        |
| PPN        |       |                              | .000          | .000                       | .000          |       | .000                                                           |        |
| MASS       | NG    |                              | .00           | .00                        | .00           |       |                                                                |        |
| ISOBUTY    | R÷MEK |                              |               |                            |               |       |                                                                |        |
| PPH        |       |                              | .007          | .001                       | .001          |       | .001                                                           |        |
| MASS       | NG    |                              | 2.61          | .14                        | .10           |       |                                                                |        |
| BENSALD    | EHYDE |                              |               |                            |               |       |                                                                |        |
| PPM        |       |                              | .000          | .000                       | .000          |       | .000                                                           |        |
| KASS       | MG    |                              | .00           | .00                        | .00           |       |                                                                |        |
| HEXANAL    | DEHYD | E                            |               |                            |               |       |                                                                |        |
| PPM        |       |                              | .000          | .000                       | .000          |       | .000                                                           |        |
| HASS       |       |                              | .00           | .00                        | .00.          |       |                                                                |        |
| METHANO    | L     |                              |               |                            |               |       |                                                                |        |
| PPN        |       |                              | 46.346        | .274                       | .209          |       | .284                                                           |        |
| EASS       |       | 7                            | 975.38        | .00                        | .00           |       |                                                                |        |
| ETHANOL    | •     |                              |               |                            |               |       |                                                                |        |
| PPH        |       |                              | .000          | .000                       | .000          |       | .000                                                           |        |
| MASS       | NG    |                              | .00           | .00                        | .00           |       |                                                                |        |
| 3-BAG COM  | POSI1 | R RESULTS                    |               |                            |               |       |                                                                |        |
|            |       | FORMALDEHYDE                 | NG/HI         | 3.276                      | CROTONALD.    | NG/NI | .000                                                           |        |
|            |       | ACETALDEHYDE                 | NG/NI         | .196                       | ISOBUTYR+NEK  |       | .179                                                           |        |
|            |       | ACROLEIN                     | NG/NI         | .000                       | BENZALDEHYDE  |       | .000                                                           |        |
|            | •     | ACETONE                      | HG/NI         | 1.194                      | HEXANALDEHYDE |       | .000                                                           |        |
|            |       | PROPIONALD.                  |               | .000                       | METHANOL      | MG/NI | 463.908                                                        |        |
|            |       |                              |               |                            | ETHANOL       | NG/HI | .000                                                           |        |

## FAX COVER LETTER

| DATE: <u>02/19/93</u>                                                                             |                                   |             |          |               |         |      |
|---------------------------------------------------------------------------------------------------|-----------------------------------|-------------|----------|---------------|---------|------|
| PLEASE DELIVER TO                                                                                 | ; Mr. J                           | esse Jone   |          |               |         | •    |
| FAX NUMBER:                                                                                       | 806-742-35                        | 40          |          | •             |         |      |
| FROM: Kevin W                                                                                     | itney, Phone: 2                   | 10-522-58   | 869      | SWRI CHA      | RGE NO. | _08# |
| Southwest Research In<br>Department of Emission<br>Automotive Products of<br>Fax Number (512) 522 | ons Research<br>and Emissions Res | search Divi | ision    |               |         |      |
| WE ARE TRANSMITT                                                                                  | ING <u>5</u>                      | _ PAGES     | (includi | ing this cove | r page) |      |
| If transmission is not com                                                                        | plete, please call (5             | 12) 522-260 | )9       |               |         |      |
| MESSAGE:                                                                                          |                                   |             |          |               |         |      |

Dear Jesse:

Sorry it took me a while to get around to this. Here are copies of the emissions data from the two tests you ran. After going over the data, I feel the low NOx number in bag 2 on the test CC-TT-02 is valid. The NOx level was probably low enough that instrumentation variability caused the background bag to read higher than the sample bag. This especially makes sense when you look at the data from the previous test (CC-TT-01). NOx was very low in bag 2 on that test, also. If you have any questions, feel free to call me at 210-522-5869.

Sincerely,

Kevin A. Whitney

Engineer

Department of Emissions Research

COMPUTER PROGRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| VERICLE NUMBER VERICLE NODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSHISSION ODONKFER 14896 KM ( 9258 HILES)                                                                                                                                                                 | TEST CC-TT-02 DATE 1/20/93 DYNO 2 RA ACTUAL ROAD LOA TEST WEIGHT 15 | RUN<br>AG CART 2<br>AD 5.74 KW (7.70 HP)<br>587 KG (3500 LBS) | METHANOL EM-1399-F FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|
| BAROMRTER 744.7 NN HG ( 29.32 IN HG) RELATIVE HUNIDITY 44.2 PCT. BAG NUMBER BAG DESCRIPTION  RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE KN (MILES) BLOWER FLOW RATE SCHM (SCFM) GAS METER FLOW RATE SCHM (SCFM) TOTAL FLOW SCN (SCF)                     | DRY BULB TEMPERATURE                                                | 21.1°C ( 70.0°F)                                              | NOX HUMIDITY C.F892                                                      |
| DIC MEMORY                                                                                                                                                                                                                                                                            | 1                                                                   | ,                                                             | 2                                                                        |
| BIC DECADIDATOR                                                                                                                                                                                                                                                                       | CULTA MADTRELEMA                                                    | 971871.7780                                                   | HAT TO MCTONT                                                            |
| DEG INDUKTI IIVM                                                                                                                                                                                                                                                                      | ( N=505 SPC )                                                       | (505±1372 SRC \                                               | ( A- RAR SEC )                                                           |
| RIN THE SECONDS                                                                                                                                                                                                                                                                       | 505.3                                                               | \$67.7                                                        | 507.1                                                                    |
| DRY/WET CORRECTION FACTOR, SAMP/BACK                                                                                                                                                                                                                                                  | .976/ 989                                                           | 9797.989                                                      | .977/.989                                                                |
| WRASHED DISTANCE KN (WILES)                                                                                                                                                                                                                                                           | 5.74 ( 3.57)                                                        | 6.15 ( 3.82)                                                  | 5.74 / 3.571                                                             |
| RIGHER PLOW RAPE SONE (SCEN)                                                                                                                                                                                                                                                          | 15 79 ( 557 5)                                                      | 15 78 ( 557 1)                                                | 15.76 ( 556.6)                                                           |
| CAS NETER FLOW PARK SCHW (SCHW)                                                                                                                                                                                                                                                       | 01 ( 27)                                                            | 01 ( 27)                                                      | 01 ( 27)                                                                 |
| TOTAL FLOW CON (COR)                                                                                                                                                                                                                                                                  | 133 0 ( 4697 )                                                      | 228 3 / 8061 )                                                | 133 3 ( 4706 )                                                           |
| TOTAL TENA DOUG (SOL)                                                                                                                                                                                                                                                                 | 133.0 ( 4877.)                                                      | 220.3 ( 6001.)                                                | 133.3 ( 4700.)                                                           |
| HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT MOX SAMPLE METER/RANGE/PDM (RAG) (D)                                                                              | 46.07 27.45.97                                                      | 12 17 27 12.09                                                | 12.17 27.12.09                                                           |
| HC BCKGRD NETER/RANGE/PPM                                                                                                                                                                                                                                                             | 9.4/ 2/ 9.39                                                        | 11.0/ 2/ 10.99                                                | 10.7/ 2/ 10.69                                                           |
| CO SAMPLE METER/RANGE/PPM                                                                                                                                                                                                                                                             | 58.1/ 12/ 56.81                                                     | 13.6/ 12/ 13.06                                               | 31.8/ 12/ 11.32                                                          |
| CO BCKGRD NETER/RANGE/PPN                                                                                                                                                                                                                                                             | 2.9/ 12/ 2.76                                                       | 2.3/ 12/ 2.19                                                 | 2.7/ 12/ 2.57                                                            |
| CO2 SAMPLE NETER/RANGE/PCT                                                                                                                                                                                                                                                            | 77 5/ 14/ 6152                                                      | 67 7/ 14/ 4680                                                | 74 7! 14/ 5695                                                           |
| CO2 BCKGRD METER/RANGE/PCT                                                                                                                                                                                                                                                            | 14.4/ 14/ .0494                                                     | 14.5/ 14/ .0498                                               | 14.9/ 14/ .0515                                                          |
| NOX SAMPLE METER/RANGE/PPM (BAG) (D)                                                                                                                                                                                                                                                  | 39.9/ 1/ 9.97                                                       | 1.5/ 1/ .38                                                   | 7.8/ 1/ 1.96                                                             |
| NOX BCKGRD WETER/RANGE/PPW                                                                                                                                                                                                                                                            | 2.3/ 1/ 58                                                          | 3 1/ 1/ 78                                                    | 1.0/ 1/ 25                                                               |
| CH4 SANPLE PPN (1.120)                                                                                                                                                                                                                                                                | 4.36                                                                | 3 90                                                          | 4.77                                                                     |
| CO2 BCKGRD NETER/RANGE/PCT NOX SAMPLE NETER/RANGE/PPM (BAG) (D) NOX BCKGRD NETER/RANGE/PPM CH4 SAMPLE PPM (1.120) CH4 BCKGRD PPM  DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM HNHC CONCENTRATION PPM | 3.30                                                                | 3.18                                                          | 3.12                                                                     |
| DILUTION FACTOR                                                                                                                                                                                                                                                                       | 18.47                                                               | 24.58                                                         | 20.23                                                                    |
| HC CONCENTRATION PPH                                                                                                                                                                                                                                                                  | 37.09                                                               | 1.55                                                          | 1.93                                                                     |
| CO CONCENTRATION PPN                                                                                                                                                                                                                                                                  | 52.38                                                               | 10.63                                                         | 8.56                                                                     |
| CO2 CONCENTRATION PCT                                                                                                                                                                                                                                                                 | .5685                                                               | .4202                                                         | .5206                                                                    |
| NOX CONCENTRATION PPM                                                                                                                                                                                                                                                                 | 9.42                                                                | 37                                                            | 1.72                                                                     |
| CH4 CONCENTRATION PPN                                                                                                                                                                                                                                                                 | .98                                                                 | . 85                                                          | 1.80                                                                     |
| HIGHC CONCENTRATION PPH                                                                                                                                                                                                                                                               | .00                                                                 | . 59                                                          | 04                                                                       |
| THC NASS GRAMS                                                                                                                                                                                                                                                                        | 8.136                                                               | .210                                                          | .163                                                                     |
| CO MASS GRAMS                                                                                                                                                                                                                                                                         | 8.112                                                               | 2.824                                                         | 1.328                                                                    |
| CO2 NASS GRANS                                                                                                                                                                                                                                                                        | 1384.57                                                             | 1756.07                                                       | 1270.27                                                                  |
| NOX HASS GRAMS                                                                                                                                                                                                                                                                        | 2.139                                                               | .000                                                          | .391                                                                     |
| CH4 MASS GRANS                                                                                                                                                                                                                                                                        | .087                                                                | . 130                                                         | .160                                                                     |
| NORC MASS GRAMS (FID)                                                                                                                                                                                                                                                                 | .000                                                                | .078                                                          | .000                                                                     |
| FUEL HASS KG                                                                                                                                                                                                                                                                          | 1.025                                                               | 1.282                                                         | .926                                                                     |
| FUEL BOOROHY L/100KU (MPG)                                                                                                                                                                                                                                                            | 22.51 ( 10.45)                                                      | 26.26 ( 8.96)                                                 | 20.35 ( 11.56)                                                           |
| 3-BAG COMPOSITE RESULTS                                                                                                                                                                                                                                                               |                                                                     |                                                               |                                                                          |
| THC G/NI                                                                                                                                                                                                                                                                              | .48 CH4 G/                                                          | /NT .03                                                       |                                                                          |
| CO G/NI                                                                                                                                                                                                                                                                               |                                                                     | /NT .01                                                       |                                                                          |
| NOX G/MI                                                                                                                                                                                                                                                                              | .15 CARBONYL G                                                      |                                                               |                                                                          |
| · -·· — <del>-; -·-</del>                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                               | ALCOHOL G/MI                                                  | .46                                                                      |
| FUEL ECOHOMY MPG (L/100KM) 9.                                                                                                                                                                                                                                                         | 87 (23.84)                                                          | NMOG G/MI                                                     | .479                                                                     |

VEHICLE NUMBER 577

COMPUTER PROGRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE BHISSION RESULTS PROJECT NO. 08-4527-008

TEST CC-TT-02

METRANOL EM-1399-F

|                         | VEHICLE HODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 |                  | DATE 1/20/93 RUN DYNO 2 BAG CART 2 |                     |           | FUEL DENSITY 6.620 LB/GAL |                   |  |
|-------------------------|-----------------------------------------------------------|------------------|------------------------------------|---------------------|-----------|---------------------------|-------------------|--|
|                         |                                                           |                  |                                    |                     |           |                           |                   |  |
|                         |                                                           |                  |                                    |                     |           | 126 C .375 O              | .499 X .000       |  |
| TRANSMISSION            |                                                           |                  |                                    | D 5.74 KW ( 7.70 HF | ?)        |                           |                   |  |
| ODONETER                | 14896                                                     | KM ( 9258 MILES) | TEST WEIGHT 15                     | 587 KG ( 3500 LBS)  |           |                           |                   |  |
| BAROMETER 744.7         | FIN HG                                                    | ( 29.32 IN HG)   | DRY BULB TEMPERATURE               | 21.1°C ( 70.0°F)    | NON       | HUNIDITY C.F.             | .892              |  |
| RELATIVE HUNIDI         | TY 44.2                                                   | PCT.             |                                    |                     |           |                           |                   |  |
| BAG MURBER              |                                                           | 1                | 2                                  | 3                   |           |                           |                   |  |
| BAG DESCRIPT            | EOM                                                       | COLD TRANSIENT   | STABILI 7RD                        | HOT TRANSIENT       | Back      | (GROUND                   |                   |  |
|                         |                                                           | ( 0-505 SEC.)    | (505-1372 SEC.)                    | ( 0- 505 SEC.)      |           |                           |                   |  |
| PORKALDERYDE            |                                                           |                  |                                    |                     |           |                           |                   |  |
| PPW                     |                                                           | .363             | .015                               | .013                |           | .017                      |                   |  |
| MASS ING                |                                                           | 56.32            | .00                                | .00                 |           |                           |                   |  |
| ACETALDEHYDE            |                                                           |                  |                                    |                     |           |                           |                   |  |
| PPN                     |                                                           | .012             | .003                               | .001                |           | .002                      |                   |  |
| NASS NG                 |                                                           | 2.36             | .43                                | . 00                |           |                           |                   |  |
| ACROLEIN                |                                                           |                  |                                    |                     |           |                           |                   |  |
| PPM                     |                                                           | .000             | .000                               | ,000                |           | .000                      |                   |  |
| NASS MG                 |                                                           | .00              | .00                                | .00                 |           |                           |                   |  |
| ACETONE                 |                                                           |                  |                                    |                     |           |                           | -                 |  |
| PPH                     |                                                           | .043             | .008                               | .015                |           | .005                      |                   |  |
| NASS NG                 |                                                           | 12.14            | 1.85                               | 3.09                |           |                           |                   |  |
| PROPIONALDEH            | YDF                                                       | ,                | 2                                  | •••                 |           |                           |                   |  |
| PPK                     | 102                                                       | .000             | .000                               | .000                |           | .000                      |                   |  |
| WASS MG                 |                                                           | .00              | .00                                | .00                 |           |                           |                   |  |
| CROTOBALDEHY            | N.F                                                       | .50              | .00                                | •00                 |           |                           |                   |  |
| PPH                     | <b>V</b> LI                                               | .000             | .000                               | .000                |           | .000                      |                   |  |
| NASS NG                 |                                                           | .00              | .00                                | .00                 |           | .000                      |                   |  |
| ISOBUTYR+NEK            |                                                           | .00              | .00                                | .00                 |           |                           |                   |  |
| PPH                     |                                                           | .007             | 001                                | .001                |           | 001                       |                   |  |
|                         |                                                           |                  | .001                               | .10                 |           | .001                      |                   |  |
| HASS NG<br>BENZALDENYDE | 1                                                         | 2.61             | .14                                | .10                 |           |                           |                   |  |
|                         | •                                                         | <b>^</b>         | 000                                | 000                 |           | 000                       |                   |  |
| PPN<br>No. of No.       |                                                           | .000             | .000                               | .000                |           | .000                      |                   |  |
| MASS NG                 | Æ                                                         | .00              | .00                                | .00                 |           |                           |                   |  |
| HKXANALDEHYD            | 'E                                                        | 000              | 000                                | 000                 |           | AAA                       |                   |  |
| PPM                     |                                                           | .000             | .000                               | .000                |           | .000                      |                   |  |
| NASS NG                 |                                                           | .00              | .00                                | .00                 |           |                           |                   |  |
| METHANOL                |                                                           |                  |                                    |                     |           |                           |                   |  |
| PPN                     |                                                           | 46.346           | .274                               | .209                |           | .284                      |                   |  |
| MASS ING                |                                                           | 7975.38          | .00                                | .00                 |           |                           |                   |  |
| ETHANOL                 |                                                           |                  |                                    |                     |           |                           |                   |  |
| PPN                     |                                                           | .000             | .000                               | .000                |           | .000                      |                   |  |
| MASS NG                 |                                                           | .00              | .00                                | .00                 |           |                           |                   |  |
| 3-BAG COMPOSI           | ie resui                                                  | TS.              |                                    |                     |           |                           |                   |  |
| <b>FORMALDERYD</b>      |                                                           |                  | 2.036 ( 3.276)                     | CROTONALD.          | MG/KM (NO | S/NI)                     | .000 ( .000)      |  |
| ACETALDEHYD             |                                                           |                  | .122 ( .196)                       | ISOBUTYR+NEK        |           | · ·                       | .111 ( .179)      |  |
| ACROLEIN                |                                                           | (MG/MI)          | .000 ( .000)                       | BENZALDEHYDE        |           | •                         | .000 ( .000)      |  |
| ACETONE                 |                                                           | (MG/MI)          | .742 ( 1.194)                      | HEXANALDEHYDE       |           |                           | .000 ( .000)      |  |
| PROPIONALD.             |                                                           |                  | .000 ( .000)                       | METHANOL            | MG/KM (M  | •                         | 288.321 (463.908) |  |
| <del></del>             | -,                                                        | · ···, (         |                                    | ETHANOL             | NG/KN (N  |                           | .000 ( .000)      |  |
|                         |                                                           |                  |                                    |                     | , /14     | -,                        | ()                |  |

COMPUTER PROGRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| VEHICLE NUMBER<br>VEHICLE NODEL<br>ENGINE | 577<br>88 CHEVY CORSICA<br>2.8 L (171 CID)-V-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEST CC-TT-01<br>DATE 1/19/93<br>DYNO 2 B | RUN<br>AG CART 2                           | METRANOL EM-1399-P<br>FUEL DENSITY 6.620 LB/GAL<br>H .126 C .375 O .499 X .000 |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|
| TRANSMISSION<br>ODONETER                  | 5N<br>14896 KM ( 9258 MILES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACTUAL ROAD LO TEST WEIGHT 1              | AD 5.74 KW (7.70 HP)<br>587 KG (3500 LBS)  |                                                                                |
| 7100W7FT 044 A                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 70 3 <sup>3</sup> 0 ( 70 6 <sup>9</sup> E) | VAU MITUTATING A E AAA                                                         |
| RIG MIWARP                                | ., 50.0 101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                         | 2                                          | 3                                                                              |
| BAG DESCRIPTION                           | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLD TRANSIENT                            | STABILIZED                                 | HOT TRANSIENT                                                                  |
|                                           | <b>~3.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 0-505 SBC.)                             | (505-1372 SBC.)                            | ( 0- 505 SEC.)                                                                 |
| RUN TIME SECO                             | NDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 505.2                                     | <b>867.</b> 0                              | 505.4                                                                          |
| DRY/WET CORRE                             | CTION FACTOR, SAMP/BACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .977/.989                                 | .980/.989                                  | .978/.989                                                                      |
| MEASURED DIST                             | ANCE KN (MILES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.76 (3.58)                               | 6.16 (3.83)                                | 5.74 ( 3.57)                                                                   |
| BLOWER FLOW R                             | ATE SCHN (SCFN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.78 ( 557.2)                            | 15.77 (556.9)                              | 15.76 ( 556.5)                                                                 |
| GAS NETER FLO                             | W RATE SCHOL (SCPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .01 ( .27)                                | 01 ( .27)                                  | .01 ( .27)                                                                     |
| TOTAL FLOW SC                             | M (SCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132.9 ( 4694.)                            | 228.0 ( 8051.)                             | 132.8 ( 4689.)                                                                 |
|                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                                       | ·                                          |                                                                                |
| EC SAMPLE HE                              | TER/RANGE/PPH (BAG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.8/ 2/ 37.78                            | 11 9/ 2/ 11.89                             | 11.5/ 2/ 1 47                                                                  |
| HC BCKGRD HE                              | TER/RANGE/PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.6/ 2/ 7.60                              | 9 9/ 2/ 9.89                               | 9.7/ 2/ ÷.69                                                                   |
| co sample ne                              | TER/RANGE/PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.6/ 12/ 32.60                           | 17 1/ 12/ 16.47                            | 10.6/ 12/ 10.16                                                                |
| OO BOKGRD HE                              | TER/RANGE/PPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1/ 12/ 1.04                             | 1 4/ 12/ 1.33                              | 1.3/ 12/ 1.23                                                                  |
| CO2 SAMPLE HE                             | ETER/RANGE/PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.8/ 14/ .6203                           | 67.4/ 14/ .4640                            | 74.1/ 14/ .5601                                                                |
| CO2 BCKGRD KE                             | RTER/RANGE/PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.0/ 14/ .0478                           | 13 7/ 14/ .0466                            | 13.8/ 14/ .0470                                                                |
| HOX SAMPLE NI                             | ETER/RANGE/PPM (BAG) (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.8/ 1/ 11.43                            | 2.7/ 1/ .68                                | 27.0/ 1/ 6.77                                                                  |
| NOX BOKGRD NI                             | rter/range/ppn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5/ 1/ .38                               | 1.9/ 1/ .48                                | 1.1/ 1/ .28                                                                    |
| CH4 SAMPLE PI                             | PR (1.120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.29                                      | 3 <b>.55</b>                               | 4.39                                                                           |
| CH4 BCKGRD PI                             | PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.54                                      | 2.52                                       | 2.51                                                                           |
| DILUTION FAC                              | TER/RANGE/PPH (BAG) TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PPH TER/RANGE/PCT ETER/RANGE/PCT ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/RANGE/PPH ETER/ | 18.42                                     | 24.78                                      | 20.57                                                                          |
| HC CONCENTI                               | RATION PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.5 <del>9</del>                         | 2.40                                       | 2.27                                                                           |
| CO CONCENT                                | RATION PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.61                                     | 14.77                                      | 8.70                                                                           |
| CO2 CONCENT                               | RATION PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>.5</b> 751                             | . 4193                                     | .5154                                                                          |
| NOX CONCENT                               | RATION PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.07                                     | .22                                        | 6.51                                                                           |
| CH4 CONCENT                               | RATION PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.88                                      | 1.13                                       | 2.60                                                                           |
| NAME CONCENT                              | RATION PRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .13                                       | 1.07                                       | .02                                                                            |
| THC NASS                                  | GRAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.521                                     | . 365                                      | .189                                                                           |
| OO MASS                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.737                                     | 3.920                                      | 1.345                                                                          |
| CO2 MASS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1399.64                                   | 1750.06                                    | 1253.19                                                                        |
| NOX MASS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.478                                     | .085                                       | 1.454                                                                          |
| CH4 HASS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .167                                      | .172                                       | .178                                                                           |
|                                           | GRAMS (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .010                                      | .141                                       | .001                                                                           |
| FUEL NASS                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.031                                     | 1.279                                      | .914                                                                           |
| FUEL ECONORY                              | ! L/100KOK (NDPG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.55 ( 10.43)                            | 26.18 ( 8.98)                              | 20.08 ( 11.71)                                                                 |
| 3-BAG COMPOSIT                            | TE RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                            |                                                                                |
|                                           | THC G/MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | S/NI .05                                   |                                                                                |
|                                           | CO G/MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | G/MI .02                                   |                                                                                |
|                                           | HOX G/NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .27 CARBONYL (                            | G/NI .01                                   |                                                                                |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ALCOHOL G/NI                               | .37                                                                            |
| PUEL ECONOM                               | Y NPG (L/100KM) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .91 (23.73)                               | NINOC C/NI                                 | .396                                                                           |

COMPUTER PROGRAM LOT 1.0-R

3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| VEHICLE MODEL<br>ENGINE<br>TRANSMISSION | ER 577 L 88 CHEVY CORSICA 2.8 L (171 CID)-V-6 5N 14896 KK ( 9258 MILES) |                | DYNO 2 BÀ<br>ACTUAL ROAD LOA | RUN<br>G CARM 2<br>D 5.74 KW   7.70 HP |                 | 620 LB/GAL        |
|-----------------------------------------|-------------------------------------------------------------------------|----------------|------------------------------|----------------------------------------|-----------------|-------------------|
| BAROMETER 744.<br>RELATIVE HUNID        |                                                                         |                | DRY BULB TEMPERATURE         | 22.2°C ( 72.0°F)                       | NON HUNIDITY C. | 680               |
|                                         |                                                                         | 1              | 2                            | 3                                      |                 |                   |
| BAG DESCRIPT                            |                                                                         | COLD TRANSIENT | STABILIZED (505-1372 SEC.)   | HOT TRANSIENT                          | BACKGROUND      |                   |
| FORMALDEHYDE                            |                                                                         |                |                              |                                        |                 |                   |
| PPH                                     |                                                                         | .252           | .008                         | .011                                   | .014            |                   |
| MASS NG                                 |                                                                         | 38.71          | .00                          | .00                                    |                 |                   |
| ACETALDEHYDE                            |                                                                         |                |                              |                                        |                 |                   |
| PPH                                     |                                                                         | .035           | .015                         | .005                                   | .002            |                   |
| MASS HG                                 |                                                                         | 7.83           | 5.54                         | .øţ                                    |                 |                   |
| ACROLEIN                                |                                                                         |                |                              | •••                                    | •••             |                   |
| PPN                                     |                                                                         | .015           | .000                         | .000                                   | .000            |                   |
| NASS NG                                 |                                                                         | 4.39           | .00                          | .00                                    |                 |                   |
| ACETONE                                 |                                                                         | 6.40           | 25.                          |                                        | 22.             |                   |
| PPK                                     |                                                                         | .048           | .059                         | .036                                   | .013            |                   |
| MASS NG                                 | nan r                                                                   | 11.22          | 25.06                        | 7.5                                    |                 |                   |
| PROPIONALDE                             | NYUL                                                                    | 01.1           | ânn                          | 200                                    | νω.             |                   |
| PPN<br>Mass ng                          |                                                                         | .010           | .000                         | .990<br>.90                            | .000            |                   |
|                                         | ALIVE.                                                                  | 3.13           | .00                          | NU s                                   |                 |                   |
| CROTONALDEH<br>PPH                      | IJĘ                                                                     | .000           | .000                         | ann                                    | .000            |                   |
| MASS NG                                 |                                                                         | .00            | .00                          | .000<br>.00                            | .000            |                   |
| ISOBUTYR+KE                             | 7                                                                       | .00            | .00                          | . ()                                   |                 |                   |
| PPM                                     | V                                                                       | .000           | .001                         | .000                                   | .001            |                   |
| MASS MG                                 |                                                                         | .00            | .04                          | .00                                    | 1001            |                   |
| BENZALDEHYD                             | F                                                                       | •••            | • (7)                        | 700                                    |                 |                   |
| PPN                                     | _                                                                       | .000           | .000                         | .300                                   | .000            |                   |
| MASS NG                                 |                                                                         | .90            | .00                          | .00                                    | .000            |                   |
| HEXANALDENY                             | יבע                                                                     | •00            | .00                          | . 000                                  |                 |                   |
| PPM                                     | <b>-</b>                                                                | .000           | .000                         | .000                                   | .000            |                   |
| MASS NG                                 |                                                                         | .(0)           | ,()()                        | .00                                    |                 |                   |
| METHANOL                                |                                                                         |                | ,,,                          |                                        |                 |                   |
| PPM                                     |                                                                         | 36.444         | . 238                        | .1 <b>7</b> 3                          | .171            |                   |
| MASS MG                                 |                                                                         | 6279.27        | 21.59                        | 1.45                                   |                 |                   |
| ETHANOL                                 |                                                                         |                |                              |                                        |                 |                   |
| PPM                                     |                                                                         | .000           | .000                         | .000                                   | .000            |                   |
| MASS NG                                 |                                                                         | .00            | .00                          | .00                                    |                 |                   |
| 3-BAG COMPOSI                           | HE RESU                                                                 | AS             |                              |                                        |                 |                   |
| FORMALDEHYT                             |                                                                         |                | 1.396 ( 2.247)               | CRGTONALD.                             | MG/KM (MG/MI)   | (000.)            |
| ACETALDEBY                              |                                                                         |                | .779 ( 1.253)                |                                        | NG/KN (NG/NI)   | .003 ( .005)      |
| ACROLEIN                                |                                                                         | (MG/MI)        | .158 ( .255)                 |                                        | MG/KM (MG/MI)   | (000. ) 000.      |
| ACETONE                                 |                                                                         | (MG/NI)        | 2.872 ( 4.622)               |                                        | MG/KH (MG/HI)   | .000 ( .000)      |
| PROPIONALD                              |                                                                         |                | .113 ( .182)                 | METHANOL                               | MG/KM (MG/MI)   | 228.389 (367.478) |
|                                         |                                                                         | - ,            |                              | ETHANOL                                | MG/KM (MG/NE)   | (000. ) 000.      |
|                                         |                                                                         |                |                              |                                        | , , ,           |                   |

## SOUTHWEST RESEARCH INSTITUTE

-120001EBAA ROAD . POST OFFICE ORAWER 28510 . SAN ANTONIO TEXAS USA 78228-0510 . (210) 684-5111 . TELEX 244846

## **FAX COVER LETTER**

|                                                                                                    | DATE: 11/arck 31, 1995 |
|----------------------------------------------------------------------------------------------------|------------------------|
| PLEASE DELIVER TO: Jesse Jor                                                                       | veS                    |
| COMPANY/FIRM: TEXAS TECK                                                                           |                        |
| FAX NUMBER: 806-742-35                                                                             | 540                    |
| FROM: Kevin Whitney                                                                                | SWRI CHARGE NO.        |
| Southwest Research Institute Department of Emissions Research Automotive Products and Emissions Re |                        |
| FAX NUMBER (210) 522-3950                                                                          |                        |
| WE ARE TRANSMITTING PA                                                                             |                        |
| MESSAGE:                                                                                           |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |
|                                                                                                    |                        |



To: Jesse Jones Texas Tech

> 806-742-3563 voice 806-742-3540 FAX

From: Kevin Whitney

Southwest Research Institute

210-522-5869 voice

Jesse,

Attached are 6 pages of test data from your Corsica. The data has been processed according to CARB methodology, so there are no OMHCE numbers. The NMOG numbers are calculated using the FID results for the gasoline portion of the exhaust. The initial tests in January 93 are CC-TT-01 and CC-TT-02. The test after mileage is TECH12/94. On the 12/94 test we had extreme difficulty on the cold start. The vehicle had to be cranked about 15 seconds, and it ran rough while in open-loop.

The data from the 12/94 test shows higher emissions for all exhaust components over all 3 bags of the FTP. In addition, fuel economy is only slightly lower on this test than previous tests. I suspect this is an indication of a failed catalyst.

Please feel free to call me at the voice number listed above if you have further questions.

Sincerely,

WEN

Kevin Whitney

COMPUTER PROGRAM LDT 1.2-R

3-BAG CARB FTP VEHICLE EMISSION RESULTS

PROJECT NO. 08-6761-004

.000

| TEST TENTICLE BUMBLE   657   TRIST TENTICL/94   TRIVERIOR BUMBLE   21.5 L (171 CID)-17-6   DATE 12/16/94   TRIVERIOR BUMBLE   21.5 L (171 CID)-17-6   DATE 12/16/94   TRIVERIOR BUMBLE   21.5 L (171 CID)-17-6   ACTUAL ROAD DADD 7.70 SP ( 5.74 KR)   TOUR DESISTY 6.620 LB/GAL PM CONCETTER   30943 MILES ( 49851 KR)   DEV BULLE TEMPERATURE   68.0° F ( 20.0° C)   MOX BUMBUTY C.F. 1.048                                    | VERICLE BUNBER VERICLE BODEL | 577<br>88 CBEVY | CORSICA    |              | TEST TECH12/<br>DATE 12/16/9 | 94<br>4 RUN     |            | METHA!                  | NOL M85<br>DENSITY 6. | AS RECEIV<br>620 LB/GAL |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|------------|--------------|------------------------------|-----------------|------------|-------------------------|-----------------------|-------------------------|
| BANGERTER 29.32 IN BG (744.7 NR BG)   DRY BULE YEMPERATURE   68.0 F (20.0 °C)   NOX BUNIDITY C.F. 1.048                                                                                                                                                                                                                                                                                                                          | ENGINE                       | 2.8 L (17       | 1 CID)-V-0 | 5            | DYNO 2                       | BAG CARI 2      |            | H .12                   | 5 C .375 (            | 0 .499 X .000           |
| BANGERTER 29.32 IN BG (744.7 NR BG)   DRY BULE YEMPERATURE   68.0 F (20.0 °C)   NOX BUNIDITY C.F. 1.048                                                                                                                                                                                                                                                                                                                          | TRANSMISSION                 | 115             |            |              | ACTUAL ROAD                  | LOAD 7.70 H     | P ( 5.74 K | ₩)                      |                       |                         |
| EMERITE 29.32 IN BG (744.7 NR HG)                                                                                                                                                                                                                                                                                                                                                                                                | ODONETER                     | 30983 NI        | LES ( 498  | 51 KM)       | TEST WEIGHT                  | 3500 LBS ( )    | 1587 KG)   |                         |                       |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         |                              |                 |            |              |                              |                 | •          |                         |                       |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | BAG MUMBER                   |                 |            |              | 1                            | 2               |            | 3                       |                       |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | BAG DESCRIPT                 | ION             |            | COL          | D TRANSIENT                  | STABIL          | IZED       | hot tran                | SIENT                 |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         |                              |                 |            | (            | 0-505 SEC.)                  | (505-137)       | 2 SEC.)    | ( 0- 50                 | 5 SEC.)               |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | RUN TIME SEC                 | ONEDS           |            |              | 505.5                        | 867.            | 2          | <b>505.</b> 7           |                       |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | DRY/WET CORR                 | ECTION FACE     | OR, SAMP/  | BACK .       | 968/.981                     | .972/.          | 981        | .970/.9                 | 81                    |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | NEASURED DIS                 | PANCE MILES     | (KM)       | 3.           | 61 ( 5.80)                   | 3.84 (          | 6.18)      | 3 <b>.58</b> ( <b>5</b> | .77)                  |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | BLOWER FLOW                  | rate scen (     | SCION)     | 56           | 5.4 (16.01)                  | <b>567.</b> 2 ( | 16.06)     | 562.9 (1                | 5.94)                 |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | CAS METER FU                 | ow rate sci     | M (SCHM)   | •            | 27 ( .01)                    | .28 (           | .01)       | .28 (                   | .01)                  |                         |
| BK   SAMPLE NETER/KARNE/PPH   5.7/ 2/ 5.70   5.3/ 2/ 5.00   4.7/ 2/ 4.70                                                                                                                                                                                                                                                                                                                                                         | TOTAL FLOW S                 | CF (SCH)        |            | 476          | 6. (135.0)                   | 8202.           | 232.3)     | 4747. ( 1               | 34.4)                 |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | BC SAMPLE N                  | eter/range/     | PPM (BAG)  | 82.5         | <i>j</i> 2 <i>j</i> 82.45    | 10.9/ 2         | / 10.89    | 14.5/ 2/                | 14.49                 |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | EC BOKGRD N                  | ETER/RANGE      | PPN        | 5.7          | / 2/ 5.70                    | 5.3/ 2          | / 5.30     | 4.7/ 2/                 | 4.70                  |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CO SAMPLE M                  | ETER/RANGE,     | /PPK       | 88.0         | / 13/ 214.97                 | 37.6/ 12        | / 36.74    | 43.6/ 13/               | 99.87                 |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | co bokgrd n                  | eter/range,     | PPN        | .2           | / 13/ .44                    | .2/ 12          | , 20       | .2/ 13/                 | .44                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CO2 SAMPLE N                 | ETER/RANGE,     | /PCT       | 80.2         | 1/ 14/ .6589                 | 66.4/ 14        | / .4456    | 72.8/ 14/               | .5354                 |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CO2 BOKGRD N                 | eter/range,     | /PCT       | 12.1         | ./ 14/ .0387                 | 11.9/ 14        | / .0380    | 12.3/ 14/               | .0395                 |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | nox sample n                 | eter/range,     | /PPM (BAG) | (D) 53.2     | 2/ 1/ 13.22                  | 12.9/ 1         | / 3.29     | 56.0/ 1/                | 13.91                 |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | noi bokeed k                 | eter/range,     | PPK        | .6           | b/ 1/ .16                    | .5/ 1           | / .13      | .0/ 1/                  | .00                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CEA SAMPLE P                 | PM (1.160)      |            |              | <b>8.9</b> 0                 | 7.              | 20         | 10.22                   | !                     |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CEN BOKGED P                 | <b>?K</b>       |            |              | 2.27                         | 2.              | 34         | 2.45                    |                       |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | DILUTION FAC                 | TOR             |            |              | 16.78                        | 2               | 5.69       | 21                      | .17                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | BC CONCENT                   | RATION PPH      |            |              | 77.10                        |                 | 5.80       | 10                      | .02                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CO CONTROL                   | RATION PPN      |            |              | 204.71                       | 3               | 5.11       | 95                      | .25                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | OO2 CONCERT                  | TATION PCT      |            |              | .6225                        |                 | 4090       | .4                      | 978                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | NOI CONCENT                  | RATION PPH      |            |              | 13.07                        |                 | 3.16       | 13                      | 3.91                  |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | CE4 CONCENT                  | RATION PPN      |            |              | 6.77                         |                 | 4.95       | 7                       | .88                   |                         |
| THC HASS GRAMS  CO MASS GRAMS  32.166  9.494  14.906  CO2 MASS GRAMS  1538.14  1739.54  1225.11  MOX HASS GRAMS  3.535  1.471  3.746  CH4 MASS GRAMS  609  .766  .706  MUNIC HASS GRAMS  1.174  1.278  .910  FUEL BOOMONY MPG (L/100KM)  9.23 (25.50)  9.02 (26.08)  11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167  CH4 G/MI .193  CO G/MI 4.280  MUNIC G/MI .004  MOX G/MI .690  CARBONYL G/MI .022  ALCOHOL G/MI .948 | NIMBE CONCENT                | RATION PPH      |            |              | <b>-3.33</b>                 |                 | .06        |                         | .55                   |                         |
| CO MASS GRAMS 32.166 9.494 14.906  CO2 MASS GRAMS 1538.14 1739.54 1225.11  MOX MASS GRAMS 3.535 1.471 3.746  CH4 MASS GRAMS 609 .766 .706  MUNIC MASS GRAMS (FID) .000 .008 .043  FUEL MASS KG 1.174 1.278 .910  FUEL ECOMONY MPG (L/100KN) 9.23 ( 25.50) 9.02 ( 26.08) 11.83 ( 19.89)  3-BAG COMPOSITE RESULTS  TBC G-NI 1.167 CH4 G/MI .193  CO G/MI 4.280 MMHC G/MI .004  MOI G/NI .690 CARBONYL G/MI .022  ALCOHOL G/MI .948 | THC HASS                     | GRAMS           |            |              |                              |                 |            |                         |                       |                         |
| CO2 MASS GRAMS 1538.14 1739.54 1225.11  MOX MASS GRAMS 3.535 1.471 3.746  CH4 MASS GRAMS .609 .766 .706  MUNIC MASS GRAMS (FID) .000 .008 .043  FUEL MASS KG 1.174 1.278 .910  FUEL ECOMONY MPG (L/LOOK) 9.23 (25.50) 9.02 (26.08) 11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.RI 1.167 CH4 G/MI .193  CO G/MI 4.280 MUNIC G/MI .004  MOI G/MI .690 CARBONYL G/MI .022  ALCOHOL G/MI .948                                      |                              |                 |            |              |                              |                 |            |                         |                       |                         |
| HOX   HASS GRAMS   3.535   1.471   3.746                                                                                                                                                                                                                                                                                                                                                                                         |                              |                 |            |              |                              |                 |            |                         |                       |                         |
| CH4 MASS GRAMS                                                                                                                                                                                                                                                                                                                                                                                                                   | NOX MASS                     | GRANS           |            |              |                              |                 |            |                         |                       |                         |
| FUEL MASS KG 1.174 1.278 .910 FUEL ECOMONY MPG (L/100KM) 9.23 (25.50) 9.02 (26.08) 11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.MI 1.167 CH4 G/MI .193 CO G/MI 4.280 MMHC G/MI .004 MOI G/MI .690 CARBONYL G/MI .022 ALCOHOL G/MI .948                                                                                                                                                                                          | CH4 MASS                     | GRANS           |            |              | .609                         |                 | .766       | •                       | 706                   |                         |
| FUEL ECONOMY NPG (L/100KM) 9.23 (25.50) 9.02 (26.08) 11.83 (19.89)  3-BAG COMPOSITE RESULTS  THC G.MI 1.167 CH4 G/MI .193 CO G/MI 4.280 MMHC G/MI .004 MOI G/MI .690 CARBONYL G/MI .022 ALCOHOL G/MI .948                                                                                                                                                                                                                        |                              |                 | )          |              | .000                         |                 | .008       | . (                     | 043                   |                         |
| 3-BAG COMPOSITE RESULTS  THC G.RI 1.167 CH4 G/MI .193 CO G/MI 4.280 MMHC G/MI .004 MOI G/MI .690 CARBONYL G/MI .022 ALCOHOL G/MI .948                                                                                                                                                                                                                                                                                            | fuel mass                    | KG              |            |              | 1.174                        | 1.              | .278       | .9                      | 10                    |                         |
| THC G.NI 1.167 CH4 G/MI .193 CO G/MI 4.280 NMHC G/MI .004 HOI G/NI .690 CARBONYL G/MI .022 ALCOHOL G/MI .948                                                                                                                                                                                                                                                                                                                     | FUEL ECONON                  | Y 10PG (L/10    | OK(N)      |              | 9.23 ( 25.50)                | 9.02            | ( 26.08)   | 11.83 (                 | 19.89)                |                         |
| CO G/MI 4.280 NMHC G/MI .004  MOX G/MI .690 CARBONYL G/MI .022  ALCOHOL G/MI .948                                                                                                                                                                                                                                                                                                                                                | 3-BAG COMPOSIS               | TE RESULTS      | ;          |              |                              |                 |            |                         |                       |                         |
| CO G/MI 4.280 NMHC G/MI .004  MOX G/MI .690 CARBONYL G/MI .022  ALCOHOL G/MI .948                                                                                                                                                                                                                                                                                                                                                |                              | TEC             | G. NI      | 1.167        |                              | CH4             | G/MT       | .193                    |                       |                         |
| MOI G/RI .690 CARBONYL G/MI .022<br>ALCOHOL G/MI .948                                                                                                                                                                                                                                                                                                                                                                            |                              |                 |            |              |                              |                 |            |                         |                       |                         |
| ALCOHOL G/MI .948                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                 |            |              |                              |                 | ,          |                         |                       |                         |
| $\iota$                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                 |            | • • • •      |                              |                 | •          |                         |                       |                         |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | FUEL            | ECONOMY N  | PG (L/100KK) | 9.73 (24.1                   |                 | •          |                         | RAF=1.00)             |                         |

COMPUTER PROGRAM LDT 1.2-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6761-004

| VERICLE NUMBI<br>VERICLE NODEL<br>ENGINE<br>TRANSMISSION<br>ODORETER | ER 577<br>L 88 CHEVY CC<br>2.8 L (171<br>M5<br>30983 HILE | ORSICA<br>CID)-V-6<br>ES ( 49851 KM) | TEST TECH12/94  DATE 12/16/94 RUN  DYNO 2 BAG CART 2  ACTUAL ROAD LOAD 7.70 HP ( 5.74 KW)  TEST WEIGHT 3500 LBS ( 1587 KG) |                     |                | METHANOL N85 AS RECEIV<br>FUEL DENSITY 6.620 LB/GAL<br>H .126 C .375 O .499 X .000 |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|------------------------------------------------------------------------------------|--|--|
|                                                                      |                                                           |                                      | DRY BULB TEMPERATURE                                                                                                       | 68.0°F ( 20.0       | )*C)           | NOX HUMIDITY C.F. 1.048                                                            |  |  |
|                                                                      | IDITY 80.7 PCT.                                           |                                      |                                                                                                                            |                     |                |                                                                                    |  |  |
| BAG NUMBER                                                           |                                                           | 1                                    | 2<br>STABILIZED                                                                                                            | 3                   |                |                                                                                    |  |  |
| BAG DESCRI                                                           | PTION COL                                                 | D TRANSIENT                          | STABILIZED                                                                                                                 | HOT TRANSIE         | THE            | BACKGROUND                                                                         |  |  |
|                                                                      |                                                           | 0-505 SEC.}                          | (505-1372 SEC.)                                                                                                            | ( 0- 505 3          | SEC.)          |                                                                                    |  |  |
| PORNALDERY                                                           |                                                           | 2 122                                | 010                                                                                                                        | 01.5                |                | 000                                                                                |  |  |
| PPW                                                                  |                                                           | 2.127                                | .012                                                                                                                       |                     |                | .009                                                                               |  |  |
| MASS NO                                                              |                                                           | 345.48                               | .76                                                                                                                        | .52                 |                |                                                                                    |  |  |
| ACETALDERY                                                           |                                                           | ne:                                  | <b>^</b>                                                                                                                   | .000                |                | .001                                                                               |  |  |
| PPR<br>NASS NG                                                       |                                                           | .051<br>11.87                        | .001<br>.00                                                                                                                | .00                 |                | .001                                                                               |  |  |
| ACROLEIN                                                             |                                                           | 11.07                                | .00                                                                                                                        | .00                 |                |                                                                                    |  |  |
| PPN                                                                  |                                                           | .000                                 | .000                                                                                                                       | .000                |                | .000                                                                               |  |  |
| NASS NG                                                              |                                                           | .00                                  | .00                                                                                                                        | .00                 |                | ,000                                                                               |  |  |
| ACETONE                                                              |                                                           | -00                                  | •••                                                                                                                        | .00                 |                |                                                                                    |  |  |
| PPM                                                                  |                                                           | .020                                 | .005                                                                                                                       | .026                |                | .007                                                                               |  |  |
| MASS NG                                                              |                                                           | 4.32                                 | .00                                                                                                                        | 5.95                |                | •••                                                                                |  |  |
| PROPIONALD                                                           |                                                           | 1102                                 |                                                                                                                            | 3173                |                |                                                                                    |  |  |
| PPM                                                                  |                                                           | .012                                 | .002                                                                                                                       | .004                |                | .002                                                                               |  |  |
| MASS NO                                                              |                                                           | 3.10                                 | .00                                                                                                                        | .49                 |                |                                                                                    |  |  |
| CROTOMALDE                                                           |                                                           |                                      |                                                                                                                            |                     |                |                                                                                    |  |  |
| PPH                                                                  |                                                           | .000                                 | .000                                                                                                                       | .000                |                | .000                                                                               |  |  |
| rass no                                                              |                                                           | .00                                  | .00                                                                                                                        | .00                 |                |                                                                                    |  |  |
| ISOBUTYR+N                                                           | IEK                                                       |                                      |                                                                                                                            |                     |                |                                                                                    |  |  |
| PPA                                                                  | ,                                                         | .022                                 | .006                                                                                                                       | .010                |                | .005                                                                               |  |  |
| nass n                                                               |                                                           | 6.88                                 | .68                                                                                                                        | 1.97                |                |                                                                                    |  |  |
| BENTALDERY                                                           |                                                           |                                      |                                                                                                                            |                     |                |                                                                                    |  |  |
| PPN                                                                  |                                                           | .000                                 | .000                                                                                                                       | .000                |                | .000                                                                               |  |  |
| MASS M                                                               |                                                           | .00                                  | .00                                                                                                                        | .00                 |                |                                                                                    |  |  |
| HEXANALDEI                                                           | iiul                                                      | 000                                  | 000                                                                                                                        | 000                 |                | 000                                                                                |  |  |
| PPM<br>NASS N                                                        | ^                                                         | .000<br>.00                          | .000<br>.00                                                                                                                | .000<br>.00         |                | .000                                                                               |  |  |
| JOHAHTEN                                                             | J                                                         | .00                                  | .00                                                                                                                        | .00                 |                |                                                                                    |  |  |
| PPM                                                                  |                                                           | 93.944                               | .199                                                                                                                       | .612                |                | .201                                                                               |  |  |
| MASS W                                                               | G 14                                                      | 6315.29                              | 1.35                                                                                                                       | 72.64               |                | .201                                                                               |  |  |
| ELEYNOT                                                              |                                                           | 0313.67                              | 1.33                                                                                                                       | 72101               |                |                                                                                    |  |  |
| PPM                                                                  |                                                           | ,000                                 | .000                                                                                                                       | .000                |                | .000                                                                               |  |  |
| MASS M                                                               | G                                                         | .00                                  | .00                                                                                                                        | .00                 |                |                                                                                    |  |  |
| 3-BAG COMPO                                                          | SITE RESULTS                                              |                                      |                                                                                                                            |                     |                |                                                                                    |  |  |
|                                                                      | FORMALDERYD                                               | E MG/MI                              | 20.094                                                                                                                     | CROTONALD.          | NG/NI          | .000                                                                               |  |  |
|                                                                      | ACETALDETYD                                               |                                      | .686                                                                                                                       | ISOBUTYR+NEK        | •              | -641                                                                               |  |  |
|                                                                      | ACPOLEIN                                                  | MG/NI                                | .000                                                                                                                       | BENZALDEHYDE        | •              | .000                                                                               |  |  |
|                                                                      | ACETOME                                                   | MG/RI                                | .707                                                                                                                       | HEXANALDEHYDE       | MG/HI          | .000                                                                               |  |  |
|                                                                      | PROPIONALD.                                               | NG/NI                                | . 216                                                                                                                      | nethanol<br>ethanol | NG/NI<br>NG/NI | 947.966<br>.000                                                                    |  |  |

COMPUTER PROGRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| COMPUTER PROG               | 1.0° k 3° E                                                                                                                                                                                                                                                | NO COM III TENICOL             | FUIOCIAN PROCEID                    | 1800001 80. 00-452: 000                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| VEHICLE MEMBER              | 577                                                                                                                                                                                                                                                        | ም <b>ድና</b> ቸ <i>ሶ</i> ሶ-ሞሞ-ብን |                                     | NETRINGE FW-1300-F                                                             |
| TEST OF MODEL               | RE CHEVY CORSICE                                                                                                                                                                                                                                           | DATE 1/20/93                   | DRN                                 | NETHANOL EM-1399-F<br>FUEL DENSITY 6.620 LB/GAL<br>H .126 C .375 O .499 X .000 |
| PECTUS HOUSE                | 2 & I (171 CID)-V-6                                                                                                                                                                                                                                        | DVIKO 2 F                      | uc cirt 2                           | H .126 C 375 D 499 Y 000                                                       |
| PRINCEL CCLUM               | 5 <b>8</b>                                                                                                                                                                                                                                                 | ארווים בייטודע בייטודע         | 110 CART 2<br>110 7 70 FD / 5 74 KI | 1 1120 C .5/5 C .4/5 % 1000                                                    |
| COOKETER                    | - 9258 NTLES / 14896 KW)                                                                                                                                                                                                                                   | TEST WEIGHT 3                  | 8500 ERS ( 1587 KG)                 | <del>, ,</del>                                                                 |
| ODGILI IIA                  | seso nimes ( 14030 ldt)                                                                                                                                                                                                                                    | IBOI WELCONI                   | 1000 EED ( \$30) 160)               |                                                                                |
| BARONETER 29.32             | IN HG (744.7 NO HG)                                                                                                                                                                                                                                        | DRY BULB TEKPERATURI           | 70.0°F ( 21.1°C)                    | NOX HUNIDITY C.F892                                                            |
| RELATIVE HUNIDIT            | Y 44.2 PCT.                                                                                                                                                                                                                                                |                                | ,                                   |                                                                                |
| BAG MUMBER                  |                                                                                                                                                                                                                                                            | 1                              | 2                                   | 3                                                                              |
| BAC DESCRIPTIO              | ¥                                                                                                                                                                                                                                                          | COLD TRANSIENT                 | STABILIZED                          | BOT TRANSIENT                                                                  |
|                             |                                                                                                                                                                                                                                                            | ( 0-505 SEC.)                  | (505-1372 SEC.)                     | ( 0- 505 SEC.)                                                                 |
| ECH TIME SECON              | DS                                                                                                                                                                                                                                                         | 505.3                          | 867.7                               | 507.1                                                                          |
| DRY/WET CORREC              | TION FACTOR, SAMP/BACK                                                                                                                                                                                                                                     | <b>.</b> 976/. <del>9</del> 89 | .979/.989                           | .977/.989                                                                      |
| MEASURED DISTA              | INCE HILES (KM)                                                                                                                                                                                                                                            | 3.57 (5.74)                    | 3.82 ( 6.15)                        | 3.57 ( 5.74)                                                                   |
| BLOWER FLOW RA              | TE SCEN (SCHOL)                                                                                                                                                                                                                                            | 557.5 (15.79)                  | 557.1 (15.78)                       | 556.6 (15.76)                                                                  |
| gas heter flow              | RATE SCFM (SCMM)                                                                                                                                                                                                                                           | .27 ( .01)                     | .27 ( .01)                          | .27 ( .01)                                                                     |
| TOTAL FLOW SCF              | Y 44.2 PCT.  N  DS  TION FACTOR, SAMP/BACK INCE MILES (KM) ITE SCFM (SCION) ITE SCFM (SCION) ITE SCFM (SCION)                                                                                                                                              | 4697. (133.0)                  | 8061. ( 228.3)                      | 4706. ( 133.3)                                                                 |
| WA 211771                   | EER/RANGE/PPN (BAG) EER/RANGE/PPN EER/RANGE/PPN EER/RANGE/PPN EER/RANGE/PPN EER/RANGE/PCT EER/RANGE/PCT EER/RANGE/PPN (BAG) (D) EER/RANGE/PPN (BAG) (D) EER/RANGE/PPN M (1.120) E OR ATION PPN ATION PPN ATION PPN ATION PPN ATION PPN ATION PPN ATION PPN |                                |                                     |                                                                                |
| BC SAMPLE NET               | CER/RANGE/PPN (BAG)                                                                                                                                                                                                                                        | 46.0/ 2/ 45.97                 | 12.1/ 2/ 12.09                      | 12.1/ 2/ 12.09                                                                 |
| BC BCKGKD RET               | EK/KANGE/PPN                                                                                                                                                                                                                                               | 9.4/ 2/ 9.39                   | 11.0/ 2/ 10.99                      | 10.7/ 2/ 10.69                                                                 |
| O DOMORD WE                 | CER/KANGE/PPN                                                                                                                                                                                                                                              | 58.1/ 12/ 56.81                | 13.6/ 12/ 13.06                     | 11.8/ 12/ 11.32                                                                |
| OO BURGED RET               | REAL MARGE / PPR                                                                                                                                                                                                                                           | 2.9/ 12/ 2.76                  | 2.3/ 12/ 2.19                       | 2.7/ 12/ 2.5/                                                                  |
| COS DANGER KE               | EEN/BARGE/PC1                                                                                                                                                                                                                                              | 77.5/ 14/ .5152                | 74.5/ 74/ 0400                      | 74.7/ 14/ .3093                                                                |
| MOY CLADE NET               | FER / DIMCE / DOM: / DIC \ / IN\                                                                                                                                                                                                                           | 19.4/ 14/ .0494                | 14.5/ 14/ .0498                     | 7 0 ( 1 / 1 ) 6                                                                |
| MOA DUACADO ADA             | PER (BANCE / PPR (DAG) (D)                                                                                                                                                                                                                                 | 39.9/ 1/ 9.9/                  | 1.5/ 1/ .36                         | 1.0/ 1/ 1.96                                                                   |
| WAY STRICK DON              | (68) #ARGE/PPR<br>( /1 130)                                                                                                                                                                                                                                | 2.3/ 1/ .38<br>4.10            | 2.1/ 1/ ./8                         | 1.0/ 1/ .25                                                                    |
| CEA SAMPLE FF               | 1 (1·120)                                                                                                                                                                                                                                                  | 3 30                           | 3.70                                | 9.//                                                                           |
| CEA DOUGHD !!!              | 4                                                                                                                                                                                                                                                          | 1.30                           | 3.10                                | 5.12                                                                           |
| DILUTION PACTO              | D <b>Ř</b>                                                                                                                                                                                                                                                 | 18.47                          | 24.58                               | 20,23                                                                          |
| EC CONCENTRA                | ATTON PPM                                                                                                                                                                                                                                                  | 37.09                          | 1.55                                | 1.93                                                                           |
| CO CONCENTRA                | ATION PPN                                                                                                                                                                                                                                                  | 52.38                          | 10.63                               | 8.56                                                                           |
| CO2 CONCENTRA               | ATION PCT                                                                                                                                                                                                                                                  | .5685                          | .4202                               | .5206                                                                          |
| NOI CONCENTR                | ATION PPN                                                                                                                                                                                                                                                  | 9.42                           | 37                                  | 1.72                                                                           |
| CE4 CONCENTR                | ATION PPN                                                                                                                                                                                                                                                  | .98                            | .85                                 | 1.80                                                                           |
| MINIBO CONCENTR             | ATION PPH                                                                                                                                                                                                                                                  | .00                            | .59                                 | 04                                                                             |
|                             |                                                                                                                                                                                                                                                            |                                |                                     |                                                                                |
| TBC MASS G                  |                                                                                                                                                                                                                                                            | 8.136                          | .210                                | .163                                                                           |
| OO HASS G                   |                                                                                                                                                                                                                                                            | 8.112                          | 2.824                               | 1.328                                                                          |
| 002 NASS G                  |                                                                                                                                                                                                                                                            | 1384.57                        | 1756.07                             | 1270.27                                                                        |
| NOX HASS G                  |                                                                                                                                                                                                                                                            | 2.139                          | .000                                | .391                                                                           |
| CH4 HASS G                  |                                                                                                                                                                                                                                                            | .087                           | .130                                | .160                                                                           |
| NINEC NASS G<br>FUEL NASS K | RAMS (FID)                                                                                                                                                                                                                                                 | .000                           | .078                                | .000                                                                           |
|                             | MPG (L/100KM)                                                                                                                                                                                                                                              | 1.025                          | 1.282                               | .926                                                                           |
| LARY SYMMUS                 | nro (L/100Mi)                                                                                                                                                                                                                                              | 10.45 ( 22.51)                 | 8.96 ( 26.26)                       | 11.56 ( 20.35)                                                                 |
| 3-BAG COMPOSITE             | RESULTS                                                                                                                                                                                                                                                    |                                |                                     |                                                                                |
|                             | TEC G/MI                                                                                                                                                                                                                                                   | .51                            | CH4 G/MI                            | .035                                                                           |
|                             | •                                                                                                                                                                                                                                                          | .96                            | NNHC G/NI                           | .011                                                                           |
|                             | •                                                                                                                                                                                                                                                          | .15                            | CARBONYL G/NI                       | .005                                                                           |
|                             | / •••                                                                                                                                                                                                                                                      | - <del></del>                  | ALCOHOL G/NI                        | . 464                                                                          |
|                             | FUEL ECONOMY MPG (L/                                                                                                                                                                                                                                       | 100KOK) 9.87 (23.84            |                                     | .479                                                                           |
|                             | ` '                                                                                                                                                                                                                                                        |                                | •                                   |                                                                                |

COMPUTER PROGRAM LOT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| VEHICLE MODEL | 2.8 L (171 CID)-V-6<br>5W                 |                                         | RUN<br>BAG CART 2<br>DAD 7.70 MEP (5.74 KW) | METHANOL EN-1399-F<br>FUEL DENSITY 6.620 LB/GAL<br>E .126 C .375 O .499 X .000 |  |
|---------------|-------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|--|
|               | .32 IN EG (744.7 NN EG)<br>DITY 44.2 PCT. | DRY BULB TEMPERATURE                    | E 70.0 F ( 21.1 C)                          | MOX HUMIDITY C.F892                                                            |  |
|               | 1                                         | 2                                       | 3                                           |                                                                                |  |
|               |                                           | r stabilized                            |                                             | BACKGROUND                                                                     |  |
|               |                                           | ) (505-1372 SEC.)                       |                                             |                                                                                |  |
| FORMALDERYD   |                                           | (303 1372 1301)                         | ( 0 000 0001)                               |                                                                                |  |
| PPN           | .363                                      | .015                                    | .013                                        | .017                                                                           |  |
| KASS NG       |                                           | .00                                     | .00                                         | •••                                                                            |  |
| ACETALDERYD   |                                           | 100                                     | 100                                         |                                                                                |  |
| PPM           | .012                                      | .003                                    | .001                                        | .002                                                                           |  |
| MASS NG       | 2.36                                      | .43                                     | .00                                         |                                                                                |  |
| ACROLEIN      | 1.30                                      | • • • • • • • • • • • • • • • • • • • • | 100                                         |                                                                                |  |
| PPM           | .000                                      | .000                                    | .000                                        | .000                                                                           |  |
| NASS NG       | .00                                       | .00                                     | .00                                         | ••••                                                                           |  |
| ACETONE       | •••                                       | •••                                     |                                             |                                                                                |  |
| PPN           | .043                                      | .008                                    | .015                                        | .005                                                                           |  |
| MASS NG       | 12.14                                     | 1.85                                    | 3.09                                        | •                                                                              |  |
| PROPIONALDE   |                                           | ••••                                    |                                             |                                                                                |  |
| PPM           | .000                                      | .000                                    | .000                                        | .000                                                                           |  |
| MASS NG       |                                           | .00                                     | .00                                         |                                                                                |  |
| CROTOWALDED   |                                           |                                         |                                             |                                                                                |  |
| PPM           | .000                                      | .000                                    | .000                                        | .000                                                                           |  |
| NASS NG       |                                           | .00                                     | .00                                         |                                                                                |  |
| ISOBUTYR+KI   |                                           |                                         |                                             |                                                                                |  |
| PPN           | .007                                      | .001                                    | .001                                        | .001                                                                           |  |
| nass ng       | 2.61                                      | .14                                     | .10                                         |                                                                                |  |
| BEHZALDERY    | DE                                        |                                         |                                             |                                                                                |  |
| PPN           | .000                                      | .000                                    | .000                                        | .000                                                                           |  |
| Mass ng       | .00                                       | .00                                     | .00                                         |                                                                                |  |
| REAYNYTDER    | YDE                                       |                                         |                                             |                                                                                |  |
| PPM           | .000                                      | .000                                    | .000                                        | .000                                                                           |  |
| hass ng       | .00                                       | .00                                     | .00                                         |                                                                                |  |
| KETHANOL      |                                           |                                         |                                             |                                                                                |  |
| PPM           | 46.346                                    | .274                                    | . 209                                       | . 284                                                                          |  |
| nass ng       | 7975.38                                   | .00                                     | .00                                         |                                                                                |  |
| ETHANOL       |                                           |                                         |                                             |                                                                                |  |
| PPN           | .000                                      | .000                                    | .000                                        | .000                                                                           |  |
| MASS NO       | .00                                       | .00                                     | .00                                         |                                                                                |  |
| 3-BAC COMPOS  | THE RESULTS                               |                                         |                                             |                                                                                |  |
|               | FORMALDERYDE NG/NI                        | 3.276                                   | CROTONALD. MG/MI                            | .000                                                                           |  |
|               | ACETALDERYDE NG/NI                        | .196                                    | ISOBUTYR+NEK MG/MI                          | .179                                                                           |  |
|               | ACROLEIN MG/MI                            | .000                                    | BENZALDEHYDE NG/NI                          | .060                                                                           |  |
|               | ACETONE NG/HI                             | 1.194                                   | HEXANALDEHYDE NG/NI                         | .000                                                                           |  |
|               | PROPIONALD. NG/NI                         | .000                                    | METHANOL MG/MI                              | 463.908                                                                        |  |
|               |                                           |                                         | ETHANOL NG/NI                               | .000                                                                           |  |

COMPUTER PROCRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| VERICLE NUMBER 577 VERICLE NODEL 88 CHE ENGINE 2.8 L TRANSMISSION 5N ODORETER 9258 | VY CORSICA<br>(171 CID)-V-6<br>MILES ( 14896 KM) | TEST CC-TH-01 DATE 1/19/93 DYNO 2 E ACTUAL ROAD LC TEST WEIGHT 3                                                               | RUN<br>NAG CART 2<br>NAD 7.70 HP (5.74 KW)<br>1500 LBS (1587 KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HETHANOL EM-1399-F FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .000 |
|------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| BARONETER 29.30 IN BO                                                              | (744.2 NON BG)                                   | DRY BULB PEMPERATURE                                                                                                           | 72.0°F ( 22.2°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HOX HUNIDITY C.F880                                                      |
| RELATIVE HUNIDITY 38.6                                                             | PCT.                                             | •                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                        |
| BAG MUNBER                                                                         |                                                  | 1                                                                                                                              | CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR O | TAN UTSINGT HAN                                                          |
| BAG DESCRIPTION                                                                    |                                                  | COLD TRANSIENT                                                                                                                 | STABILIZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BUI TRANSIENT                                                            |
|                                                                                    |                                                  | ( 0-505 SEC.)                                                                                                                  | (505-1372 SEC.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( 0- 505 SEC.)                                                           |
| ROB TIME SECONDS                                                                   |                                                  | 505.2                                                                                                                          | 867.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202.4                                                                    |
| DRY, WET CORRECTION                                                                | FACTOR, SAMP/BACK                                | .977/.989                                                                                                                      | .980/.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .9/8/.989                                                                |
| REASURED DISTANCE A                                                                | ITES (KM)                                        | 3.58 (5.76)                                                                                                                    | 3.83 ( 6.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5/ (5./4)                                                              |
| BLOWER FLOW RATE SC                                                                | FIX (SCHON)                                      | 557.2 (15.78)                                                                                                                  | 556.9 (15.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 556.5 (15.76)                                                            |
| GAS METER FLOW RATE                                                                | SCFM (SCFM)                                      | .27 ( .01)                                                                                                                     | .27 ( .01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .27 ( .01)                                                               |
| total flow SCF (SCH                                                                | )                                                | 1 COLD TRANSIENT ( 0-505 SEC.) 505.2 .977/.989 3.58 ( 5.76) 557.2 (15.78) .27 ( .01) 4694. ( 132.9)                            | 8051. ( 228.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4689. ( 132.8)                                                           |
| BC SAMPLE METER/RA                                                                 | NGB/PPN (BAG)                                    | 37.8/ 2/ 37.78 7.6/ 2/ 7.60 33.6/ 12/ 32.60 1.1/ 12/ 1.04 77.8/ 14/ .6203 14.0/ 14/ .0478 45.8/ 1/ 11.43 1.5/ 1/ .38 4.29 2.54 | 11.9/ 2/ 11.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.5/ 2/ 11.49                                                           |
| HC BOKGED HETER/RA                                                                 | NGE/PPN                                          | 7.6/ 2/ 7.60                                                                                                                   | 9.9/2/9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.7/ 2/ 9.69                                                             |
| co sample meter/ra                                                                 | NGE/PPM                                          | 33.6/ 12/ 32.60                                                                                                                | 17.1/ 12/ 16.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.6/ 12/ 10.16                                                          |
| OD BOXGRD NETER/RA                                                                 | NGE/PPN                                          | 1.1/12/1.04                                                                                                                    | 1.4/ 12/ 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3/ 12/ 1.23                                                            |
| CO2 SAMPLE RETER/RA                                                                | NGE/PCI                                          | 77.8/ 14/ .6203                                                                                                                | 67.4/ 14/ .4640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.1/ 14/ .5601                                                          |
| OO2 BOXGRD HETER/RA                                                                | IGE/PCT                                          | 14.0/ 14/ .0478                                                                                                                | 13.7/ 14/ .0466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.8/ 14/ .0470                                                          |
| HOI SAMPLE METER/RA                                                                | MGE/PPM (BAG) (D)                                | 45.8/ 1/ 11.43                                                                                                                 | 2.7/ 1/ .68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.0/ 1/ 6.77                                                            |
| NON BOKGRD RETER/RA                                                                | NGE/PPN                                          | 1.5/ 1/ .38                                                                                                                    | 1.9/ 1/ .48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1/ 1/ .28                                                              |
| CH4 SAMPLE PPH (1.1                                                                | 20)                                              | 4.29                                                                                                                           | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.39                                                                     |
| CHA BOKGRD PPH                                                                     |                                                  | 2.54                                                                                                                           | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.51                                                                     |
| DILUTION FACTOR                                                                    |                                                  | 18.42<br>30.59<br>30.61<br>.5751<br>11.07<br>1.88                                                                              | 24.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.57                                                                    |
| EC CONCENTRATION                                                                   | PPN                                              | 30.59                                                                                                                          | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.27                                                                     |
| CO CONCERTRATION                                                                   | PPK                                              | 30.61                                                                                                                          | 14.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.70                                                                     |
| CO2 CONCENTRATION                                                                  | PCT                                              | .5751                                                                                                                          | ,4193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5154                                                                    |
| NOT CONCENTRATION                                                                  | PPM                                              | 11.07                                                                                                                          | .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.51                                                                     |
| CH4 CONCENTRATION                                                                  | PPN                                              | 1.88                                                                                                                           | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00                                                                     |
| NNEC CONCENTRATION                                                                 | PPN                                              | .13                                                                                                                            | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .02                                                                      |
| THC HASS GRAMS                                                                     |                                                  | 6.521                                                                                                                          | .365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .189                                                                     |
| CO MASS GRAMS                                                                      |                                                  | 4.737                                                                                                                          | 3.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.345                                                                    |
| CO2 MASS GRAMS                                                                     |                                                  | 1399.64                                                                                                                        | 1750.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1253.19                                                                  |
| NOX KASS GRANS                                                                     |                                                  | 2.478                                                                                                                          | .085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.454                                                                    |
| CH4 NASS GRANS                                                                     |                                                  | .167                                                                                                                           | .172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .178                                                                     |
| NOMES NASS GRAMS                                                                   | (FID)                                            | .010                                                                                                                           | .141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .001                                                                     |
| FUEL RASS KG                                                                       |                                                  | 1.031                                                                                                                          | 1.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .914                                                                     |
| FUEL ECOMONY MPC (                                                                 | L/100KH)                                         |                                                                                                                                | 8.98 ( 26.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| 3-BAG COMPOSITE RES                                                                |                                                  |                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                        |
| T                                                                                  | BC G/NI                                          | .44                                                                                                                            | CH4 G/NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .047                                                                     |
| C                                                                                  | O G/NI                                           | .91                                                                                                                            | NNHC G/NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .020                                                                     |
| ¥                                                                                  | OX G/NI                                          | .27                                                                                                                            | CARBONYL G/MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .009                                                                     |
|                                                                                    |                                                  |                                                                                                                                | ALCOHOL G/MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .367                                                                     |
| F                                                                                  | TEL ECOMONY MPG (L                               | /100KDK) 9.91 (23.73                                                                                                           | ) NHOG G/NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .396                                                                     |

COMPUTER PROGRAM LIFT 1.0-R 3-BAG CARB FTF VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

| REMONETER 29.30 IN NG (744, 2 NR NG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VEHICLE NODEL<br>ENGINE<br>TRANSMISSION | 577<br>88 CHEVY CORSICA<br>2.8 L (171 CID)-V-6<br>5N<br>9258 NILES ( 14896 KM) | DYNO 2 B<br>ACTUAL ROAD LO | RUN<br>AG CART 2<br>AD 7.70 HP (5.74 KW) |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|----------------------------|------------------------------------------|---------------------|
| BAG DRECKIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ITY 38.6 PCT.                                                                  |                            | 72.0°F ( 22.2°C)                         | NOX HUNIDITY C.F880 |
| BASE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 1                                                                              | 2                          | 3                                        |                     |
| Co-505 SEC.   (505-1372 SEC. ) ( 0 - 505 SEC. )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ON COLD TRANSIENT                                                              | STABILIZED                 |                                          | BACKGROUND          |
| POPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | ( 0-505 SEC.)                                                                  | (505-1372 SEC.)            | ( 0- 505 SEC.)                           |                     |
| NLSS   NC   38.71   .00   .00   .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PORTEALDERYDE                           |                                                                                |                            |                                          |                     |
| PPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPK                                     | .252                                                                           | .008                       | .011                                     | .014                |
| PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MASS NG                                 | 38.71                                                                          | .00                        | .00                                      |                     |
| PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACETALDEHYDE                            |                                                                                |                            |                                          |                     |
| PPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                | .015                       | .005                                     | .002                |
| PPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NASS NG                                 | 7.83                                                                           | 5.54                       | .65                                      |                     |
| MASS NG 4.39 .00 .00 ACETORIE  PPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                |                            |                                          |                     |
| ACETOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPN                                     | .015                                                                           | .000                       | .000                                     | .000                |
| PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MASS MG                                 | 4.39                                                                           | .00                        | .00                                      |                     |
| MASS NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACETOME                                 |                                                                                |                            |                                          |                     |
| PROPIONALDERYDE PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPK                                     | .048                                                                           | .059                       | .036                                     | .013                |
| PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MASS ING                                | 11.22                                                                          | 25.06                      | 7.57                                     |                     |
| NASS NG 3.13 .00 .000  CROTONALDERYDE  PPN .000 .000 .000 .000  NASS NG .00 .00 .00 .000  ISOBETYTHEX  PPN .000 .001 .000 .001  NASS NG .00 .001 .000 .001  NASS NG .00 .004 .000  BEBLALDERYDE  PPN .000 .000 .000 .000  NASS NG .00 .00 .000 .000  RELAMALDERYDE  PPN .000 .000 .000 .000  NASS NG .00 .00 .000 .000  NASS NG .00 .00 .00 .00  NASS NG .00 .00 .00 .00  NETRANOL  PPN 36.444 .238 .173 .171  NASS NG 6279.27 21.59 1.45  ETELNOL  PPN .000 .000 .000 .000  NASS NG .00 .00 .000  NASS NG .00 .00 .000  NASS NG .00 .000 .000  NASS NG .00 .000 .000  NASS NG .00 .000 .000  NASS NG .00 .000 .000 .000  NASS NG .00 .000 .000 .000  NASS NG .00 .000 .000 .000  NASS NG .00 .000 .000 .000  NASS NG .00 .000 .000 .000  NASS NG .000 .000 .000 .000  NASS NG .000 .000 .000 .000  NASS NG .000 .000 .000 .000  NASS NG .000 .000 .000 .000 .000  NASS NG .000 .000 .000 .000 .000  NASS NG .000 .000 .000 .000 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROPIONALDEH                            | YDE                                                                            |                            |                                          |                     |
| CROTOMALDERYDE  PPN .000 .000 .000 .000  RASS NG .00 .00 .000 .000  ISOBCTYR*HEX  PPN .000 .001 .000 .001  BASS NG .00 .004 .000  BEBEALDERYDE  PPN .000 .000 .000 .000  RASS NG .00 .00 .000 .000  RECAMALDERYDE  PPN .000 .000 .000 .000  RELAMALDERYDE  PPN .000 .000 .000 .000  RASS NG .00 .00 .000 .000  RASS NG .00 .00 .000 .000  RASS NG .00 .00 .000 .000  RASS NG .00 .00 .000 .000  RASS NG .00 .00 .000 .000  RASS NG .00 .00 .000 .000  RASS NG .00 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000  RASS NG .000 .000 .000 .000  RASS NG .000 .000 .000 .000  RASS NG .000 .000 .000 .000  RASS NG .000 .000 .000 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPK                                     | .010                                                                           | .000                       | .000                                     | .000                |
| PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MASS MG                                 | 3.13                                                                           | .00.                       | .00                                      |                     |
| NASS NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CROTONALDERY                            | Œ                                                                              |                            |                                          |                     |
| ISOBLTYR+NEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PPW                                     | .000                                                                           | .000                       | .000                                     | .000                |
| PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NASS NG                                 | .00                                                                            | .00                        | .00                                      |                     |
| NASS NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ISOBCTYR+REX                            |                                                                                |                            |                                          |                     |
| PPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPM                                     | .000                                                                           | .001                       | .000                                     | .001                |
| PPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MASS NG                                 | .00                                                                            | .04                        | .00                                      |                     |
| NASS NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BENIALDEHYDE                            |                                                                                |                            |                                          |                     |
| ### 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PPM                                     | .000                                                                           | .000                       | .000                                     | .000                |
| PPN   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   . | XLASS NG                                | .00                                                                            | .00                        | .00                                      |                     |
| NASS NG   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00    | REXAMALDERY                             | 30                                                                             |                            |                                          |                     |
| PPH   36.444   .238   .173   .171     NASS NG   6279.27   21.59   1.45     ETBANOL   PPH   .000   .000   .000   .000     NASS NC   .00   .00   .00   .00     S-BAG COMPOSITE RESULTS   PORNALDEHYDE NG/NI   2.247   CROTONALD. NG/NI   .000     ACRETALORHYDE NG/NI   1.253   ISOBUTYR+NEK NG/NI   .005     ACROLEIN NG/NI   .255   BENZALDEHYDE NG/NI   .000     ACETONE NG/NI   4.622   HEXANALDERYDE NG/NI   .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPM                                     | .000                                                                           | .000                       | .000                                     | .000                |
| PPH   36.444   .238   .173   .171     NASS NG   6279.27   21.59   1.45     ETRANOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nass ng                                 | .00                                                                            | .00                        | .00                                      |                     |
| RASS NG   6279.27   21.59   1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NETHANOL                                |                                                                                |                            |                                          |                     |
| ETRAMOL         PPN         .000         .000         .000         .000         .000           NASS NC         .00         .00         .00         .00         .00           3-BAG COMPOSITE RESULTS         FORNALDEHYDE NG/NI         2.247         CROTONALD. NG/NI         .000           ACETALDEHYDE NG/NI         1.253         ISOBUTYR+NEK NG/NI         .005           ACBOLEIN NG/NI         .255         BENZALDEHYDE NG/NI         .000           ACETONE NG/NI         4.622         HEXANALDEHYDE NG/NI         .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPK                                     | 36.444                                                                         | .238                       | .173                                     | .171                |
| PPN   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   | NASS NG                                 | 6279.27                                                                        | 21.59                      | 1.45                                     |                     |
| NASS NC .00 .00 .00  3-BAG COMPOSITE RESULTS  FORMALDEHYDE NG/NI 2.247 CROTONALD. NG/NI .000 ACETALDEHYDE NG/NI 1.253 ISOBUTYR+NEK NG/NI .005 ACEOLEIN NG/NI .255 BENZALDEHYDE NG/NI .000 ACETOME NG/NI 4.622 HEXANALDEHYDE NG/NI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETRANOL                                 |                                                                                |                            |                                          |                     |
| 3-BAG COMPOSITE RESULTS  FORMALDEHYDE MG/NI 2.247 CROTONALD. MG/NI .000 ACETALDEHYDE MG/NI 1.253 ISOBUTYR+NEK MG/NI .005 ACEOLEIN MG/NI .255 BENZALDEHYDE MG/NI .000 ACETOME MG/NI 4.622 HEXANALDERYDE MG/NI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                | -000                       |                                          | .000                |
| FORMALDEHYDE NG/NI 2.247 CROTONALD. NG/NI .000 ACETALDEHYDE NG/NI 1.253 ISOBUTYR+NEK NG/NI .005 ACEOLEIN NG/NI .255 BENZALDEHYDE NG/NI .000 ACETOME NG/NI 4.622 HEXANALDEHYDE NG/NI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nass nc                                 | .00                                                                            | .00                        | .00                                      |                     |
| ACETALDERYDE NG/NI 1.253 ISOBUTYR+NEK NG/NI .005 ACEOLEIN NG/NI .255 BENZALDERYDE NG/NI .000 ACETOME NG/NI 4.622 HEXANALDERYDE NG/NI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-BAG COMPOSI                           | TE RESULTS                                                                     |                            |                                          |                     |
| ACETALDERYDE NG/NI 1.253 ISOBUTYR+NEK NG/NI .005 ACEOLEIN NG/NI .255 BENZALDERYDE NG/NI .000 ACETOME NG/NI 4.622 HEXANALDERYDE NG/NI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | FORMALDEHYDE MC/MI                                                             | 2.247                      | CROTONALD. KG/KI                         | .000                |
| ACETOME MG/MI 4.622 HEXANALDERYDE MG/MI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                |                            |                                          | .005                |
| ACETOME MG/MI 4.622 HEXANALDERYDE MG/MI .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | ACROLEIN NG/HI                                                                 | . 255                      |                                          | .000                |
| PROPIONALD. NG/NI .182 NETHANOL NG/NI 367.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | · · · · · · · · · · · · · · · · · · ·                                          | 4.622                      | HEXANALDERYDE MG/NI                      | .000                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | PROPIONALD. NG/NI                                                              | .182                       | nethanol ng/ni                           | 367.478             |

ETHANOL

MG/KI

.000

## **APPENDIX** D

**Initial Oil Cnsumption Test Results** from Southwest Research Institute

## SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD ● POST OFFICE DRAWER 28510 ● SAN ANTONIO, TEXAS JSA 78228-0510 ● (512) 684-5111 ● TELEX 244846

ENGINE, FUEL, AND VEHICLE RESEARCH DIVISION TELECOPIER: 512/522-2019

July 7, 1992

Dr. Tim Maxwell
Department of Mechanical Engineering
Texas Tech University
Lubbock, Texas 79409
Fax. 806-742-3540

Subject: Southwest Research Institute Preproposal No. EVR-1126,

"Oil Consumption Measurement for A Methanol Vehicle Under Emission Cycle"

Dear Dr. Maxwell:

We are pleased to submit the above preproposal. The following is the content of the proposed tasks.

#### **OBJECTIVE**

The objective of this proposal is to measure oil consumption of a methanol vehicle on chassis dynamometer under EPA Federal Test Procedure.

#### **APPROACH**

The approach is to use the on-line oil consumption measurement system developed by SwRI using SO<sub>2</sub> tracer method. I have enclosed two SAE papers and one brochure for your reference. This literature describes the capability of the on-line oil consumption measurement system. Currently, the system uses relatively long exhaust gas sampling line as described in the literature and it is not appropriate for the FTP transient cycle test. However, another system is being setup in the one of SwRI engine test cell. This new system will be able to measure true real-time oil consumption; therefore, it is appropriate for the proposed project and planned for the proposed project.

Briefly, the engine will be operated on relatively high sulfur oil (~1%wt). This oil has good sulfur balance over a certain distilled fraction and it will be available for the proposed project. Since the fuel is methanal, there is no provision necessary for the fuel preparation in terms of sulfur content. By knowing fuel and air flow rate, the oil consumption in grams per unit time can be calculated by measuring SO<sub>2</sub> concentration in the exhaust gas since sulfur concentration in the oil is known. SwRI has developed a PC data acquisition system for the online oil consumption measurement. The oil consumption will be continuously monitored and stored for the data analysis.



Dr. Tim Maxwell Texas Tech University Southwest Research Institute EVR-July 7, 1992 Page 2

#### PROJECT TASK

#### **Pretest Preparation**

The oil consumption measurement system will be relocated to the vehicle emissions test laboratory of Department of Emissions Research at SwRI and prepared for the measurement. The engine will have to be run on no sulfur oil for a while in order to eliminate sulfur background. This test will usually last about 4 to 8 hours. Then, the oil is replaced with the qualified high sulfur oil, and the preliminary test will be conducted for making sure all the instrumentation functions. As soon as the measurement results are determined to be acceptable, the vehicle test under the FTP transient cycle will be initiated as follows.

#### Test 1

The oil consumption under the FTP transient cycle will be measured before the vehicle is tested for the long term road test. The oil consumption measurement results will be analyzed and plotted against the test time.

#### Test 2

The oil consumption under the FTP transient cycle will be measured after the vehicle test is completed. The oil consumption measurement results will be analyzed and plotted against the test time.

#### REPORTING

A comprehensive final report will be prepared and submitted to Texas Tech University at the completion of the project.

#### COST AND TIME ESTIMATE

The cost plus fixed fee contract cost estimate is \$41,000. The estimate project duration is two (2) months. Upon receiving your acceptance, SwRI will prepare a formal proposal and submit it to Texas Tech University with contractual documentation.

#### **CLOSURE**

Engine tribological problems associated with Alcohol engines still exist. The result of this project is expected to provide an additional information useful for investigating such problems. It is particular interest to observe how much of the effect of component dimensional change due to the wear on the oil consumption will affect the emissions characteristics under transient conditions. SwRI is very interested in participating to the program and hoping to provide Texas Tech University the valuable results

Dr. Tim Maxwell Texas Tech Univeristy Southwest Research Institute EVR-July 7, 1992 Page 3

If you have any questions, please feel free to call me at 512-522-3194. Our facsimile number of 512-522-2019 for your convenience.

Sincerely,

Susumu Ariga Acting Manager

Engine Tribology Section

Department of Engine Research

Approved:

Shannon Vinyard, Director Department of Engine Research

/sjh

## SOUTHWEST RESEARCH INSTITUTE

5220 CULEBRA REAC . POST OFFICE DRAWER 1850. . AN ANTONIC (EXAC USA 78728 0510. . COLORA 5111. . TELEX 244846

ENGINE, FUEL, AND VEHICLE RESEARCH DIVISION TELECOPIER (210) 522-2019

April 23, 1993

Dr. Tim Maxwell Professor Department of Mechanical Engineering Texas Tech Research Lubbock, Texas 79409 Fax: 806-742-3540

Subject: Progress Report No. 1 for Southwest Research Institute Project 03-5461,

"Oil Consumption Measurement for A Methanol Vehicle Under Emission Cycle"

#### Dear Dr. Maxwell:

This is the first progress report for the subject project. The work has been completed for the first oil consumption meaurement as Test 1, and the car has been picked up by a student from Texas Tech Research. The following describes the work accomplishment, problems, and future plans.

#### **OBJECTIVE**

The objective of this project is to measure oil consumption of a methanol vehicle on a chassis dynamometer under EPA Federal Test Procedures before and after the vehicle durability tests.

#### WORK ACCOMPLISHMENTS

The oil consumption measurement system was refined to increase the sampling response time by means of electronic sample gas pressure closed loop control in order to increase the accuracy of the measurement under transient operating conditions. The device was designed, fabricated, and tested by actually conducting the oil consumption measurement on one engine installed at SwRI. After the acceptable gas sampling response time (less than one second) was determined, the oil consumption measurement system hardware and a PC data acquisition system were relocated from the engine research laboratory to the vehicle emissions test laboratory and prepared for the measurement.

In order to prepare for the oil consumption testing, the methanol powered vehicle (GM Corsica 2.8 liter V6 engine) was instrumented for flow rates of intake air and fuel and engine pertinent temperatures and pressures. A laminar flow element (LFE) with pressure transducers was used for the intake air flow measurement in real-time, and a micro-motion real-time mass fuel flow meter was used for fuel flow measurement. An exhaust gas sampling probe was fitted



Dr. Tim Maxwell Texas Tech Research April 23, 1993 Page 2

to the exhaust pipe close to the manifold flange. The original oil was drained, saved, and a zero sulfur synthetic oil was installed. The vehicle was then driven at normal operating temperatures to mix the zero sulfur oil with any residue of the original oil. This process was repeated through three changes of zero sulfur oil to insure that any sulfur residue from the original oil had been flushed from the system.

The vehicle was installed on the dynamometer and tested to establish baseline performance of the oil consumption instrumentation with zero sulfur oil in the vehicle. The zero sulfur oil was then drained, and replaced for the balance of the testing with an oil of known sulfur concentration that has proven to be very stable in maintaining this fixed concentration throughout the testing cycle.

The test preparation went smoothly. The EPA Urban Dynamometer Driving Test cycle was performed on the vehicle from cold start condition, followed by a repeat of the cycle from hot start condition. The total length of the test is approximately 60 minutes, including soaking time, and the actual vechicle operating time is 40 minutes. In addition, the vehicle was operated under three steady-state conditions to obtain additional oil consumption information from this particular vehicle. The results are descussed below.

After the completion of the first test, the vehicle was returned to Texas Tech on April 12, 1993.

## **PROBLEMS**

The oil consumption measurement system had a problem dealing with the  $SO_2$  detection instrumentation. The problem was found when the system was being used for another SwRI project. The correction could be made; however, it took about one month to complete the investigation and applying the solution. The problem was that the  $NO_X$  signal interfered with the  $SO_2$  signal. Therefore, the measured  $SO_2$  concertation was actually higher than the true value. This incident delayed the test schedule by about one month.

#### DISCUSSION OF TEST 1 RESULTS

The EPA Urban Dynamometer Driving Test cycle was performed on the vehicle from cold start condition, followed by a repeat of the cycle from hot start condition. Figures 1 and 2 represent plots of real-time oil consumption and vehicle speed during these two test cycles. Note that Figure 1, the cold start cycle, shows considerably less oil consumption during the first 800 seconds of the cycle when compared to the hot start cycle of Figure 2. Figures 3 through 9 illustrate these same two test cycles plotted together, but with an expanded time base to allow a more detailed comparison. While changes in vehicle speed during these test cycles is the primary cause of variations in oil consumption, engine temperature seems to be another major contributor. Figures 10 and 11 show coolant temperature out of the block, plotted with oil consumption. Note that the low oil consumption during the first 800 seconds of the cold start test, Figure 10, shows lower temperatures during the same time period.

Dr. Tim Maxwell Texas Tech Research April 23, 1993 Page 3

Following the cycling tests, three additional tests were performed at steady-state conditions. These were 2675 RPM in fourth gear, 1500 RPM in fifth gear, and idle at 900 RPM. Results of these tests are presented in Figures 12 through 14. It is quite apparent in these figures that engine temperature, as monitored by coolant temperature, has a very marked effect on the oil consumption. These data suggest that total engine oil consumption could be significantly reduced by a moderate reduction in coolant temperature perhaps to as low as 180°F. It will be extremely important when the vehicle has accumulated the required road miles and is returned to have these tests repeated, that the engine temperatures are duplicated very closely so that any variations in oil consumption reflect only effects of the accumulated miles.

#### **FUTURE PLANS**

Test 2 will commence after the vehicle durability test is completed. The vechile durability test will be conducted by Texas Tech Research.

If you have any questions, please feel free to call me at 210-522-3956. Our facsimile number of 512-522-2019 for your convenience.

Sincerely,

Jim Barbee

**Engineering Technologist** 

Department of Engine Research

Approved:

Susumu Ariga, Acting Manager

Engine Tribology

Department of Engine Research

ckh

## EPA URBAN DYNAMOMETER DRIVING TEST FROM COLD START USING METHANOL FUEL



FIGURE 1

## EPA URBAN DYNAMOMETER DRIVING TEST FROM HOT START USING METHANOL FUEL



FIGURE 2



FIGURE 3

# EPA URBAN DYNAMOMETER DRIVING TEST USING METHANOL FUEL



FIGURE 4



FIGURE 5

# EPA URBAN DYNAMOMETER DRIVING TEST USING METHANOL FUEL



FIGURE 6



FIGURE 7

# EPA URBAN DYNAMOMETER DRIVING TEST USING METHANOL FUEL



FIGURE 8



FIGURE 9

# EPA URBAN DYNAMOMETER DRIVING TEST FROM COLD START USING METHANOL FUEL



FIGURE 10

# EPA URBAN DYNAMOMETER DRIVING TEST FROM HOT START USING METHANOL FUEL



FIGURE 11





FIGURE 12

### 1500 RPM STEADY STATE CONDITION



FIGURE 13





FIGURE 14

### **APPENDIX E**

Final Oil Consumption Test Results from Southwest Research Institute

# OIL CONSUMPTION MEASUREMENT FOR A METHANOL VEHICLE UNDER EMISSIONS CYCLE

### SwRI Project No. 03-5461

Prepared for:

Dr. T. Maxwell
Professor
Department of Mechanical Engineering
Texas Tech Research Foundation
P.O. Box 43106
Lubbock, Texas 79409-3106

Prepared by:

Susumu Ariga

Approved:

S. M. Shahed

**Director** 

Department of Engine Research

Engine and Vehicle Research Division

#### **EXECUTIVE SUMMARY**

Methanol-fueled engines have a higher wear rate of power cylinder components, especially when the vehicle is operated under cold temperature conditions. Excessive components' wear may increase blowby gas flow and oil consumption. Oil deterioration is, then, accelerated and an increased amount of lubricant additives emits to the exhaust system, contributing to the catalyst deactivation.

The objective was to measure the oil consumption of a methanol-fueled vehicle under the conditions of the EPA dynamometer urban driving cycle test procedure. The Southwest Research Institute (SwRI) developed on-line oil consumption measurement system was employed to accomplish the real-time measurement of oil consumption under transient operating conditions. Oil consumption was measured before and after the vehicle accumulated a driving distance of more than 20,000 miles under city driving conditions and was compared to evaluate the effect of the durability test.

The oil consumption rate (g/hr) increased during the durability test. The degree of the increase varied, depending on the measurement conditions under either a cold- or hot-start test. The average oil consumption rate measured under the cold-start transient test conditions increased by 26 percent and that measured under the hot-start transient conditions increased by 9 percent.

Oil consumption over the duration of the EPA urban cycle (~1400 seconds) was significantly higher (52 percent) under the hot-start conditions than under the cold-start conditions. This trend was the same, regardless of pre- or post-durability testing, although the difference measured in the post-durability test was lower (31 percent).

Oil consumption of the post-durability test measured under steady-state conditions significantly increased (223 percent) when the engine speed was relatively high, e.g., 2950-rpm.

Whether the level of increase is high or low is not certain because there was no oil consumption data obtained for the gasoline engine under the same test procedure. Therefore, it is recommended that oil consumption of the gasoline engine be measured for comparison. A comprehensive test is recommended to understand the relationship between oil consumption, catalyst efficiency, and lubricant additives trapped in the catalyst in order to determine the significance of oil consumption increase for a long driving distance. Further investigation will be necessary to explain the high increase in oil consumption measured under a steady-state condition after the durability test has been completed.

### TABLE OF CONTENTS

|     | <u>Page</u>                    | 2 |
|-----|--------------------------------|---|
| 1.0 | BACKGROUND                     | l |
| 2.0 | OBJECTIVE                      | 2 |
| 3.0 | TEST APPARATUS AND PROCEDURE   | 3 |
| 4.0 | DISCUSSION OF THE TEST RESULTS | 4 |
| 5.0 | CONCLUSIONS                    | 9 |
| 6.0 | RECOMMENDATIONS                | 0 |

### LIST OF FIGURES

| Figur | <u>e</u> <u>Page</u>                                                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| 1     | OIL CONSUMPTION MEASURED UNDER COLD- START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE                                          |
| 2     | OIL CONSUMPTION MEASURED UNDER HOT-START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE                                            |
| 3     | AVERAGE OIL CONSUMPTION RATE DURING TRANSIENT CYCLE                                                                          |
| 4     | COOLANT TEMPERATURE DIFFERENCE BETWEEN COLD-AND HOT-START                                                                    |
| 5     | OIL CONSUMPTION UNDER STEADY-STATE CONDITIONS BEFORE (TEST 1) AND AFTER (TEST 2) THE DURABILITY TEST                         |
| 6     | THE RELATIONSHIP BETWEEN HYDROCARBON CONVERSION EFFICIENCY AT A CATALYST AND THE AMOUNT OF PHOSPHOROUS REACHING THE CATALYST |

#### 1.0 BACKGROUND

Wear of the power cylinder components of a methanol engine is higher than that of a gasoline engine, especially under cold temperature operating conditions. The primary reason is the corrosiveness of methanol combustion products formed in the crevices of the piston and ring pack. A large degree of component wear increases blowby and oil consumption in a relatively short time. A high blowby increases the rate of lubricant deterioration. An increased oil consumption accelerates the catalyst deactivation due to chemical poisoning caused by the lubricant additives. Specially-formulated lubricant additives are normally used to reduce the wear of a methanol engine's components. However, there has not been test data available to show the level of oil consumption increases caused by component wear, especially those under transient operating conditions.

### 2.0 OBJECTIVE

The objective is to measure the oil consumption of a methanol vehicle on chassis dynamometer under the EPA dynamometer urban driving cycle test procedure before and after the vehicle durability test has been completed.

#### 3.0 TEST APPARATUS AND PROCEDURE

The SwRI-developed on-line oil consumption measurement system has been used to measure oil consumption under step transients. The sampling gas pressure was manually controlled to maintain a certain level to achieve an acceptable measurement accuracy. It is impossible to manually adjust the sampling gas pressure under the EPA's transient cycle. Thus, the gas sampling technique was refined with an electronic, closed-loop control system. The sampling gas pressure was maintained at constant, regardless of speed and load change. This provision achieved the accuracy of the oil consumption measurement under transient conditions.

In order to prepare for oil consumption testing, the methanol-fueled vehicle (GM Corsica 2.8 liter V6 engine) was instrumented for flow rates of intake air and fuel, and engine pertinent temperatures and pressures. A laminar flow element (LFE) with pressure transducers was used for the intake air flow measurement in real-time, and a micro-motion, real-time mass fuel flow meter was used for fuel flow measurement. An exhaust gas sampling probe was fitted to the exhaust pipe close to the manifold flange. The standard oil was drained, saved, and a zero sulfur synthetic oil was installed. The vehicle was, then, driven at normal operating temperatures to mix the zero sulfur oil with any residue of the original oil. This process was repeated through three changes of zero sulfur oil to insure that any sulfur residue from the original oil had been flushed from the system.

The vehicle was installed on the chassis dynamometer and tested to establish baseline performance of the oil consumption instrumentation with zero sulfur oil in the vehicle. The zero sulfur oil was then drained and replaced, for the balance of the testing, with an oil of known sulfur concentration that has proven to be thermally stable in maintaining the fixed concentration throughout the testing cycle.

The EPA urban dynamometer driving test cycle was performed on the vehicle from cold-start conditions, followed by a repeat of the cycle from hot-start conditions. The total length of the test is approximately 60 minutes, including soaking time, and the actual vehicle operating time was 40 minutes. In addition, the vehicle was operated under three steady-state conditions to obtain additional oil consumption information from this particular vehicle. The same tests were repeated after the vehicle was returned from the field test. The results are discussed below.

#### 4.0 DISCUSSION OF THE TEST RESULTS

The Effect of a 21,000 Mile Durability Test: Figures 1 and 2 show plots of cumulative oil consumption in gram and vehicle speed during two test cycles. Each figure also shows the results obtained before (9,260 miles) and after the durability test (31,050 miles) was completed. The effect of the durability test (21,790 miles) was significant when the test was conducted under the cold-start conditions. Oil consumption increased by 26 percent after the durability test was completed. Under the hot-start conditions, the increase, due to the durability test, was 9 percent.

### EPA URBAN DYNAMOMETER DRIVING TEST TEST #1 vs TEST #2, COLD START 60 40 SPEED (mph) 20 0 TOTAL O.C. (g) -20 TEST 1 -60 600 800 200 400 1000 1200 1400 ELAPSED TIME (sec.)

FIGURE 1. OIL CONSUMPTION MEASURED UNDER COLD-START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE

FILE: MPH7A.WQI

# EPA URBAN DYNAMOMETER DRIVING TEST TEST #1 vs TEST #2, HOT START



FIGURE 2. OIL CONSUMPTION MEASURED UNDER HOT-START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE

The Effect of Cold- and Hot-Start: The difference in oil consumption between cold- and hot-start was high and the trend was the same, regardless of the pre- and the post-durability test, e.g., 52 and 31 percent, respectively. Figure 3 compares the average oil consumption rate in g/hr between cold- and hot-start and that between pre- and post-durability test.

Coolant temperature of the first 800 seconds was quite different between the cold and the hot-start test as shown in Figure 4. Thus, the difference in oil consumption between cold- and hot-start could primarily be caused by the difference in component temperatures. Low viscosity oil at high component temperature increases oil flow through the ring pack, while it decreases oil film thickness on the cylinder wall. The oil flow increase, due to the low viscosity, was probably significant enough to increase the amount of oil present in the cylinder compared to the oil volume reduction due to a reduced oil film thickness. Therefore, the amount of oil supplied to the combustion chamber likely increased, causing it to increase oil consumption under hot-start conditions. The trend of high oil consumption under hot-start conditions was the same, regardless of pre- and post-durability test.

## OIL CONSUMPTION UNDER EPA URBAN CYCLES 2.8-L V-6 METHANOL ENGINE



FIGURE 3. AVERAGE OIL CONSUMPTION RATE DURING TRANSIENT CYCLE



FIGURE 4. COOLANT TEMPERATURE DIFFERENCE BETWEEN COLD-AND HOT-START

Steady-State Tests: Following the transient cycle tests, three additional tests were performed under steady-state conditions. These were a 2675-rpm engine speed in fourth gear, 1500-rpm in fifth gear, and idle at 900-rpm. Results of these tests are presented in Figure 5. The increase in oil consumption of the post-durability test was significant at a higher engine speed. At 2675-rpm, the oil consumption of the post durability test was more than double (223 percent) compared to that of the pre-durability test. The rate of increase was significantly higher than that observed in the results obtained under transient cycles. A further investigation will be necessary to understand the differences observed between the steady-state and transient test results.

### OIL CONSUMPTION UNDER STEADY-STATE 2.8-L V-6 METHANOL ENGINE



FIGURE 5. OIL CONSUMPTION UNDER STEADY-STATE CONDITIONS BEFORE (TEST 1) AND AFTER (TEST 2) THE DURABILITY TEST

Summary: Since there was no gasoline engine data, a comparison could not be made to determine the level of oil consumption increase measured in the methanol engine after the durability test was completed. However, a rough estimate of oil consumption over 100,000 miles can be made with the results obtained in this project. Oil consumption of the post-durability test (about 21,000 miles) increased by 9 to 26 percent, depending on whether there was a hot- or cold-start operating condition. In 100,000 miles, oil consumption could increase by 1.43 to 2.23 times, depending on cold- and hot-start, and on the assumption that the effect of component wear or other factors on the oil consumption increase remain the same throughout the 100,000 miles. The oil consumption rate, however, is likely to increase as the vehicle accumulates its mileage,

and it increases exponentially rather than linearly. Thus, the oil consumption increase will probably be greater than the above estimate.

The impact of the oil consumption increase is catalyst poisoning. Figure 6 shows the data found in the referenced literature regarding the relationship between hydrocarbon conversion efficiency of the catalyst and the amount of phosphorous contained in lubricating oil reaching the catalyst. Suppose the amount of phosphorous increased by a factor of 2 because oil consumption increase was twice the above estimate, the catalyst efficiency drops by about 10 percent. This may not appear significant; however, the increase in hydrocarbon emissions downstream of the catalyst becomes about 50 percent higher on the assumption that hydrocarbon emissions out of the engine do not change. In reality, the emissions out of the engine also increase as the vehicle accumulates miles. Therefore, the catalyst poisoning must be reduced. If engine oil no longer requires such additives as ZDDP, yet low component wear is warranted, the catalyst poisoning could be minimized. Otherwise, oil consumption should be reduced to a minimum level.

Research into the details of the relationship between oil consumption, catalyst efficiency, and additives accumulated reaching to the catalyst is one subject that should be considered for future research. The results will provide quantitative characterization of the effect of oil consumption on catalyst poisoning and will help to determine the level of oil consumption that should be targeted for future engines.



FIGURE 6. THE RELATIONSHIP BETWEEN HYDROCARBON CONVERSION EFFICIENCY AT A CATALYST AND THE AMOUNT OF PHOSPHOROUS REACHING THE CATALYST

<sup>&</sup>lt;sup>1</sup>J. A. Spearot and F. Carraciolo, "Engine Oil Phospherus Effects on Catalytic Converter Performance in Federal Durability and High Speed Vehicle Tests," SAE Transaction, Vol. 86, 1977.

### 5.0 CONCLUSIONS

- 1. Oil consumption of a methanol-fueled vehicle under the EPA urban driving test cycle was successfully measured with the sulfur tracer technique.
- 2. Vehicle durability tests of more than 20,000 miles increased oil consumption by 26 percent under cold-start conditions and by 9 percent under hot-start conditions.
- 3. Oil consumption under hot-start conditions was higher than under cold-start conditions, by as much as 56 percent.
- 4. The effect of component temperatures on oil viscosity appears to be the primary cause of high oil consumption under hot-start conditions.
- Oil consumption under steady-state conditions significantly increased (223 percent) at a 2675-rpm engine speed after the durability test was completed.

#### **6.0 RECOMMENDATIONS**

- 1. It is recommended that oil consumption of a gasoline-fueled vehicle be measured under conditions similar to those used for the methanol-fuel vehicle in order to normalize the effect of methanol operation on the oil consumption.
- 2. The relationship between oil consumption, catalyst efficiency, and additives trapped in the catalyst should be investigated by obtaining the measurement results of all three variables at the same time. The results will be useful in understanding whether catalyst poisoning due to lubricant additives is serious.
- 3. A further investigation will be necessary to understand the differences in the degree of oil consumption increase depending on steady-state and transient conditions.

### REPORT DOCUMENTATION PAGE

Form Approved OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| Trasington, Do 2000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. REPORT DATE<br>September 1995                                                                                                                                                                                                                        | 3. REPORT TYPE AND DATES COV<br>Fina Subcontract Report, 1 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /ERED<br>November 1992 - 1 February 1995                               |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. FUNDING NUMBERS                                                     |
| Long-Term Methanol Vehicle Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est Program                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C: AAE-5-12245-01                                                      |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | TA: FU521010                                                           |
| J. C. Jones and T. T. Maxwell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| 7. PERFORMING ORGANIZATION NAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IE(S) AND ADDRESS(ES)                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER                            |
| Texas Tech University<br>Mechanical Engineering Depart<br>Lubbock, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ment                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE STATE ROLL TO                                                      |
| 9. SPONSORING/MONITORING AGENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CY NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER                      |
| National Renewable Energy Lat<br>1617 Cole Blvd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | poratory                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP-425-7633                                                            |
| Golden, CO 80401-3393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE95009289                                                             |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| NREL Technical Monitor: C. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Polyoni                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| 12a. DISTRIBUTION/AVAILABILITY ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12b. DISTRIBUTION CODE                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UC-1500                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00-1500                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| exhaust emissions during long overall vehicle performance we we vehicle performance, oil consult was removed from the vehicle any preexisting wear. All gast seats were lapped, and the crinstalled, and the computer syphase, the vehicle emissions of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | p-term use. Engine wear, gasket<br>ere monitored over approximately<br>imption, and emissions baselines<br>and disassembled, and all bearingets, seals, bearings, and piston in<br>ankshaft journals were polished,<br>stem was calibrated for M100 fue | performance, fuel economy, emise 22,000 miles of vehicle operation were established to be used for any and ring clearances and camprings were replaced. The cylinder Higher flow rate fuel injectors suel. At the completion of the progress performance were again determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ram, after the mileage accumulation nined. The engine was removed from |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15. NUMBER OF PAGES<br>92                                              |
| vehicle; methanol;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. PRICE CODE                                                         |
| 17. SECURITY CLASSIFICATION OF REPORT Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified                                                                                                                                                                                                   | 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20. LIMITATION OF ABSTRACT                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0.                                                                   |